精英家教网 > 高中数学 > 题目详情

【题目】已知数列的前项和.

(1)求数列的通项公式

(2)求数列的前项和.

【答案】(1)见解析;(2).

【解析】

试题分析:(1)时,;当时,,对不成立,从而可得数列的通项公式;(2)时,,当时, 利用裂项相消法可得,再验证是否成立即可.

试题解析:(1)当时,

时,

不成立,

所以数列的通项公式为.

(2)当时,

时,

所以

时,符合上式,

所以).

【方法点晴】本题主要考查数列的通项公式与求和,以及裂项相消法求数列的和,属于中档题. 裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1);(2 3;(4 此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在△ABC中,边a、b、c分别是角A、B、C的对边,且满足bcosC=(3a-c)cosB

(1)求cosB

(2)若△ABC的面积为4,b=4,求△ABC的周长

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,△ABC为正三角形,EC⊥平面ABC,BD∥CE,且CE=CA=2BD,M是EA的中点.求证:

(1)DE=DA;

(2)平面BDM⊥平面ECA;

(3)平面DEA⊥平面ECA.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列是首项的等差数列,设.

(1)求证:是等比数列;

(2)记,求数列的前项和

(3)在(2)的条件下,记,若对任意正整数,不等式恒成立,求整数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一半径为2米的水轮如图所示,水轮圆心距离水面1;已知水轮按逆时针做匀速转动,每3秒转一圈,如果当水轮上点从水中浮现时(图中点)开始计算时间.

(1)试将点距离水面的高度(单位:)表示为时间(单位:)的函数;

(2)第一次到达最高点大约要多长时间?

(3)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2017·江苏高考)如图,在三棱锥ABCD中,ABADBCBD,平面ABD⊥平面BCD,点EF(EAD不重合)分别在棱ADBD上,且EFAD.

求证:(1)EF∥平面ABC

(2)ADAC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】伴随着智能手机的深入普及,支付形式日渐多样化,打破了传统支付的局限性和壁垒,有研究表明手机支付的使用比例与人的年龄存在一定的关系,某调研机构随机抽取了50人,对他们一个月内使用手机支付的情况进行了统计,如下表:

(1)若以“年龄55岁为分界点”,由以上统计数据完成下面的列联表,并判断是否有的把握认为“使用手机支付”与人的年龄有关;

(2)若从年龄在内的被调查人中各随机选取2人进行追踪调查,记选中的4人中“使用手机支付”的人数为.

①求随机变量的分布列;

②求随机变量的数学期望.

参考数据如下:

0.05

0.010

0.001

3.841

6.635

10.828

参考格式:,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面为梯形,.的中点,底面在平面上的正投影为点,延长于点.

(1)求证:中点;

(2)若,在棱上确定一点,使得平面,并求出与面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的长轴长是短轴长的2倍,且过点

⑴求椭圆的方程

⑵若在椭圆上有相异的两点三点不共线),为坐标原点且直线直线直线的斜率满足.

(ⅰ)求证: 是定值

(ⅱ)设的面积为取得最大值时求直线的方程

查看答案和解析>>

同步练习册答案