【题目】已知,函数.
(1)当时,求函数在上的最值;
(2)若函数在上单调递增,求的取值范围.
【答案】(1)见解析;(2)a≥ .
【解析】
(1) 当a=2时,求得函数的导数,利用导数得出函数的单调性,即可求解函数的最值;
(2)根据函数f(x)在(-1,1)上单调递增,转化为在(-1,1)上恒成立,再利用分离参数,转化为函数的最值问题,即可求解.
(1) 当a=2时,f(x)=(-x2+2x)ex,f′(x)=(-x2+2)ex.
令f′(x)=0,则x=-或x=
当x变化时,f′(x),f(x)的变化情况如下表:
x | 0 | (0, ) | (,2) | 2 | |
f′(x) | + | 0 | - | ||
f(x) | f(0)=0 | ↗ | 极大值f() | ↘ | f(2)=0 |
所以,f(x)max= f()=(-2+2),f(x)min= f(0)=0.
(2)因为函数f(x)在(-1,1)上单调递增,所以f′(x)≥0在(-1,1)上恒成立.
又f′(x)=[-x2+(a-2)x+a]ex,即[-x2+(a-2)x+a]ex≥0,注意到ex>0,
因此-x2+(a-2)x+a≥0在(-1,1)上恒成立,
也就是a≥=x+1-在(-1,1)上恒成立.
设y=x+1-,则y′=1+>0,
即y=x+1-在(-1,1)上单调递增,
则y<1+1-=,故a≥.
科目:高中数学 来源: 题型:
【题目】定义在上的函数,如果存在函数(为常数),使得对一切实数都成立,则称为函数的一个承托函数.给出如下命题:
① 函数是函数的一个承托函数;
② 函数是函数的一个承托函数;
③ 若函数是函数的一个承托函数,则的取值范围是;
④ 值域是的函数不存在承托函数。 其中,所有正确命题的序号是__.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列的前项和为,满足,,数列满足,,且.
(1)求数列的通项公式;
(2)求证:数列是等差数列,求数列的通项公式;
(3)若,求数列的前项和。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在直角坐标系xOy中,圆C的参数方程为为参数,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为.
1求圆C的普通方程和直线l的直角坐标方程;
2设M是直线l上任意一点,过M做圆C切线,切点为A、B,求四边形AMBC面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在正四棱锥中,底边,侧棱, 为侧棱上的点.
(1)若平面,求二面角的余弦值的大小;
(2)若,侧棱上是否存在一点,使得平面,若存在,求的值;若不存在,试说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com