精英家教网 > 高中数学 > 题目详情

(本小题满分12分)如图是从上下底面处在水平状态下的棱长为的正方体中分离出来的:

(1)试判断是否在平面内;(回答是与否)
(2)求异面直线所成的角;
(3)如果用图示中这样一个装置来盛水,那么最多可以盛多少体积

(1)是(2)(3)

解析试题分析:
解:(1)是     3分
(2)       7分(补全正方体即得)
(3)     12分
又∵平面平面,∴直线平面
考点:空间的点线面的位置关系的运用
点评:解决的关键是利用角的定义以及几何体的体积来求解,属于基础题,考查了空间想象能力,以及计算能力。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在底面为平行四边形的四棱柱中,底面.

(1)求证:平面平面
(2)若,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

有一个正四棱台形状的油槽,可以装油190L,假如它的两底面边长分别等于60cm和40cm,求它的深度为多少cm?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在正三棱柱ABC-A1B1C1中,若BB1=1,AB=,求AB1与C1B所成角的大小。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

正方形ABCD中,点O是对角线AC的中点,点P是对角线AC上一动点.
(1)如图1,当点P在线段OA上运动时(不与点AO重合) ,PEPB交线段CD于点EPFCD于点E

①判断线段DFEF的数量关系,并说明理由;
②写出线段PCPACE之间的一个等量关系,并证明你的结论;
(2)如图2,当点P在线段OC上运动时(不与点OC重合),PEPB交直线CD于点EPFCD于点E.判断(1)中的结论①、②是否成立?若成立,说明理由;若不成立,写出相应的结论并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图1,,过动点A,垂足在线段上且异于点,连接,沿将△折起,使(如图2所示).

(1)当的长为多少时,三棱锥的体积最大;
(2)当三棱锥的体积最大时,设点分别为棱的中点,试在棱上确定一点,使得,并求与平面所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图,四棱锥中,底面为矩形,平面,点分别是的中点.

求证:平面
, 四棱锥外接球的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)如图,在四棱锥中,底面为平行四边形,中点,平面,
中点.

(1)证明://平面
(2)证明:平面
(3)求直线与平面所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知梯形ABCD中,AD∥BC,∠ABC ="∠BAD" =,AB=BC=2AD=4,
E、F分别是AB、CD上的点,且EF∥BC.设AE =,G是BC的中点.
沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF (如图).

(1)当=2时,求证:BD⊥EG ;
(2)若以F、B、C、D为顶点的三棱锥的体积记为,求的最大值;
(3)当取得最大值时,求二面角D-BF-E的余弦值.

查看答案和解析>>

同步练习册答案