精英家教网 > 高中数学 > 题目详情

【题目】如图甲,在直角梯形PBCD中,PB∥CD,CD⊥BC,BC=PB=2CD,A是PB的中点.

现沿AD把平面PAD折起,使得PA⊥AB(如图乙所示),E、F分别为BC、AB边的中点.

(1)求证:平面PAE⊥平面PDE;

(2)在PE上找一点Q,使得平面BDQ⊥平面ABCD.

(3)在PA上找一点G,使得FG∥平面PDE.

【答案】(1)见解析; (2)当PQ=2QE时,平面BDQ⊥平面ABCD; (3)满足AG= AP时,有FG∥平面PDE..

【解析】

(1)现根据线面平行的判定得到PA⊥平面ABCD,根据底面图形特点得到AEED,又因为PAED进而得到ED⊥平面PAE,可推得面面垂直;(2)假设平面BDQ⊥平面ABCD,BDQ交底面ABCDH点,根据线面平行的性质得到PA平行于面BDQ,QH平行于PA再由相似导出比例关系;(3)过点FFH∥EDADH,再过HGH∥PDPAG,连接FG,证明平面FHG∥平面PED,即可证明FG∥平面PDE.

(1)证明:因为PA⊥AD, PA⊥AB, ABAD=A,

所以PA⊥平面ABCD.因为BC=PB=2CD, A是PB的中点,所以ABCD是矩形,

又E为BC边的中点,所以AE⊥ED.

又由PA⊥平面ABCD, 得PA⊥ED, 且PAAE=A, 所以ED⊥平面PAE,

而ED平面PDE,故平面PAE⊥平面PDE.

(2)假设平面BDQ⊥平面ABCD,面BDQ交底面ABCD于H点,又因为由第一问得到PA⊥平面ABCD,可得到直线PA平行于面BDQ,由线面平行的性质得到QH平行于PA,因为AD平行于BE,BE:AD=EH:HA=1:2,根据三角形EHQ相似于三角形PAE,故得到EQ:EP=HQ:AP=2:3.故当PQ=2QE时,平面BDQ⊥平面ABCD.

(3)过点F作FH∥ED交AD于H,再过H作GH∥PD交PA于G, 连结FG.

由FH∥ED, ED平面PED, 得FH∥平面PED;

由GH∥PD,PD平面PED,得GH∥平面PED,

又FHGH=H,所以平面FHG∥平面PED.所以FG∥平面PDE.

再分别取AD、PA的中点M、N,连结BM、MN,

易知H是AM的中点,G是AN的中点,

从而当点G满足AG=AP时,有FG∥平面PDE.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn , 已知2Sn=3n+1+2n﹣3.
(1)求数列{an}的通项公式;
(2)求数列{nan}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一动圆与定圆外切,同时和圆内切,定点A(1,1).

(1)求动圆圆心P的轨迹E的方程,并说明是何种曲线;

(2)ME上任意一点, FE的左焦点,试求的最小值;

(3)试求的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知多面体均垂直于平面

(1)证明:⊥平面

(2)求直线与平面所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在R上的奇函数,且满足f(x+2)=﹣ ,当1≤x≤2时,f(x)=x,则f(﹣ )=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体中,若是线段上的动点,则下列结论不正确的是(  )

A. 三棱锥的正视图面积是定值

B. 异面直线所成的角可为

C. 异面直线所成的角为

D. 直线与平面所成的角可为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,过点的直线倾斜角为,原点到该直线的距离为

(Ⅰ)求椭圆的标准方程;

(Ⅱ)斜率大于零的直线过与椭圆交于EF两点,若,求直线EF的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三角形ABC和梯形ACEF所在的平面互相垂直,AB⊥BC,AF⊥AC,AF 2CE,G是线段BF上一点,AB=AF=BC=2.

(1)当GB=GF时,求证:EG∥平面ABC;
(2)求二面角E﹣BF﹣A的余弦值;
(3)是否存在点G满足BF⊥平面AEG?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足a1=2,an1=3an+2,

(1)证明:是等比数列,并求的通项公式;

(2)证明: .

查看答案和解析>>

同步练习册答案