精英家教网 > 高中数学 > 题目详情

【题目】对于无穷数列,记,若数列满足:“存在,使得只要),必有”,则称数列具有性质.

(Ⅰ)若数列满足判断数列是否具有性质?是否具有性质

(Ⅱ)求证:“是有限集”是“数列具有性质”的必要不充分条件;

(Ⅲ)已知是各项为正整数的数列,且既具有性质,又具有性质,求证:存在整数,使得是等差数列.

【答案】(Ⅰ)数列不具有性质;具有性质;(Ⅱ)见解析;(Ⅲ)见解析.

【解析】试题分析:(1)根据新定义直接验证即可的结论(2)对于“是有限集”是“数列具有性质”的必要不充分条件,先证不充分性对于周期数列 是有限集,但是由于

所以不具有性质;再证必要性因为数列具有性质,所以一定存在一组最小的,满足,即,所以数列中必然会以某个周期进行,所以数列中最多有个不同的项,从而得证(3)因为数列具有性质,数列具有性质,所以存在,使得 ,其中分别是满足上述关系式的最小的正整数,然后根据其性质列出相关等式可得结论,然后逐一分析取值讨论

试题解析:

(Ⅰ)数列不具有性质;具有性质.

(Ⅱ)(不充分性)对于周期数列 是有限集,但是由于

所以不具有性质

(必要性)因为数列具有性质

所以一定存在一组最小的,满足,即

由性质的含义可得

所以数列中,从第k项开始的各项呈现周期性规律: 为一个周期中的各项,

所以数列中最多有个不同的项,

所以最多有个元素,即是有限集.

(Ⅲ)因为数列具有性质,数列具有性质

所以存在,使得 ,其中分别是满足上述关系式的最小的正整数,

由性质的含义可得

,则取,可得

,则取,可得.

,则对于,有 ,显然

由性质的含义可得

所以

所以.

所以

是满足 的最小的正整数,

所以

所以

所以

,则

所以,若是偶数,则

是奇数,则

所以

所以是公差为1的等差数列.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图已知椭圆C: +y2=1,以椭圆的左顶点T为圆心作圆T:(x+2)2+y2=r2(r>0).设圆T与椭圆C交于点M与点N.
(1)求 的最小值;
(2)设点P是椭圆C上异于M,N的任意一点,且直线MP,NP分别与x轴交于点R,S,O为坐标原点,求证:丨OR丨丨OS丨为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax+ 的图象经过点A(1,1),B(2,﹣1).
(1)求函数f(x)的解析式;
(2)判断函数f(x)在(0,+∞)上的单调性并用定义证明;
(3)求f(x)在区间[ ,1]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,抛物线 与椭圆 在第一象限的交点为 为坐标原点, 为椭圆的右顶点, 的面积为.

求抛物线的方程;

点作直线 两点,射线分别交两点,记的面积分别为,问是否存在直线,使得?若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= (x∈R),e是自然对数的底.
(1)计算f(ln2)的值;
(2)证明函数f(x)是奇函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列各组函数中,表示同一函数的是( )
A.
与g(x)=x﹣1
B.f(x)=2|x|与
C.

D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解答
(1)已知全集U={x|﹣5≤x≤10,x∈Z},集合M={x|0≤x≤7,x∈Z},N={x|﹣2≤x<4,x∈Z},求(UN)∩M(分别用描述法和列举法表示结果)
(2)已知全集U=A∪B={0,1,2,3,4,5,6,7,8,9,10},若集合A∩UB={2,4,6,8},求集合B;
(3)已知集合P={x|ax2+2ax+1=0,a∈R,x∈R},当集合P只有一个元素时,求实数a的值,并求出这个元素.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等腰直角三角形ABC的直角顶点A在x轴的正半轴上,B在y轴的正半轴上,C在第一象限,设∠BAO=θ(O为坐标原点),AB=AC=2,当OC的长取得最大值时,tanθ的值为(
A.
B.﹣1+
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为评估两套促销活动方案(方案1运作费用为5元/件;方案2的运作费用为2元/件),在某地区部分营销网点进行试点(每个试点网点只采用一种促销活动方案),运作一年后,对比该地区上一年度的销售情况,制作相应的等高条形图如图所示.

(1)请根据等高条形图提供的信息,为该公司今年选择一套较为有利的促销活动方案(不必说明理由);

(2)已知该公司产品的成本为10元/件(未包括促销活动运作费用),为制定本年度该地区的产品销售价格,统计上一年度的8组售价(单位:元/件,整数)和销量(单位:件)()如下表所示:

售价

33

35

37

39

41

43

45

47

销量

840

800

740

695

640

580

525

460

①请根据下列数据计算相应的相关指数,并根据计算结果,选择合适的回归模型进行拟合;

②根据所选回归模型,分析售价定为多少时?利润可以达到最大.

49428.74

11512.43

175.26

124650

(附:相关指数

查看答案和解析>>

同步练习册答案