【题目】有如下几个结论: ①相关指数R2越大,说明残差平方和越小,模型的拟合效果越好; ②回归直线方程:,一定过样本点的中心:③残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适; ④在独立性检验中,若公式,中的|ad-bc|的值越大,说明“两个分类变量有关系”的可能性越强.其中正确结论的个数有( )个.
A. 1 B. 2 C. 3 D. 4
科目:高中数学 来源: 题型:
【题目】设抛物线的准线与轴交于,抛物线的焦点,以为焦点,离心率的椭圆与抛物线的一个交点为;自引直线交抛物线于两个不同的点,设.
(1)求抛物线的方程及椭圆的方程;
(2)若,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】著名英国数字家和物理字家lssacNewton曾提出了物体在常温环境下温度变化的冷却模型:把物体放在冷空气中冷却,如果物体的初始温度为,空气的温度为分钟后物体的温度可甶公式得到,这里是自然对数的底,是一个由物体与空气的接触状況而定的正的常数,先将一个初始温度为62的物体放在15的空气中冷却,1分钟后物体的温度是52.
(1)求的值(精确到0.01);
(2)该物体从最初的62冷却多少分钟后温度是32(精确到0.1)?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某旅游为了解2015年国庆节期间参加某境外旅游线路的游客的人均购物消费情况,随机对50人做了问卷调查,得如下频数分布表:
人均购物消费情况 | [0,2000] | (2000,4000] | (4000,6000] | (6000,8000] | (8000,10000] |
额数 | 15 | 20 | 9 | 3 | 3 |
附:临界值表参考公式:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:K2= ,其中n=a+b+c+d.
(1)做出这些数据的频率分布直方图并估计次境外旅游线路游客的人均购物的消费平均值;
(2)在调查问卷中有一项是“您会资助失学儿童的金额?”,调查情况如表,请补全如表,并说明是否有95%以上的把握认为资助数额多于或少于500元和自身购物是否到4000元有关?
人均购物消费不超过4000元 | 人均购物消费超过4000元 | 合计 | |
资助超过500元 | 30 | ||
资助不超过500元 | 6 | ||
合计 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,,.
(1)设.①若,则,满足什么条件时,曲线与在x=0处总有相同的切线?②当a=1时,求函数单调区间;
(2)若集合为空集,求ab的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设复数z满足zi=2﹣i,i为虚数单位,
p1:|z|= ,
p2:复数z在复平面内对应的点在第四象限;
p3:z的共轭复数为﹣1+2i,
p4:z的虚部为2i.
其中的真命题为( )
A.p1 , p3
B.p2 , p3
C.p1 , p2
D.p1 , p4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为,点也为抛物线的焦点.(1)若为椭圆上两点,且线段的中点为,求直线的斜率;
(2)若过椭圆的右焦点作两条互相垂直的直线分别交椭圆于和,设线段的长分别为,证明是定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在多面体ABCDE中,DB⊥平面ABC,AE∥DB,且△ABC是边长为2的等边三角形,2AE=BD=2.
(Ⅰ)若F是线段CD的中点,证明:EF⊥面DBC;
(Ⅱ)求二面角D﹣EC﹣B的平面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数f(x)=ax2+bx+c(a,b,c∈R)满足:对任意实数x,都有f(x)≥x,且当x∈(1,3)时,有f(x)≤ (x+2)2成立.
(1)证明:f(2)=2;
(2)若f(-2)=0,求f(x)的表达式;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com