精英家教网 > 高中数学 > 题目详情
11.如图,P是△ABC所在平面外一点,E,F,G分别在AB,BC,PC上,且PG=2GC,AC∥平面EFG,PB∥平面EFG.则$\frac{AE}{EB}$=(  )
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

分析 AC∥平面EFG,PB∥平面EFG,可得AC∥EF,PB∥FG,再结合PG=2GC,即可得出结论.

解答 解:∵AC∥平面EFG,平面EFG∩平面ABC=EF,PB∥平面EFG,平面EFG∩平面PBC=FG
∴AC∥EF,PB∥FG,
∴PG:GC=BF:FC=EB:AE
∵PG=2GC,
∴BF=2FC,
∴EB=2AE,
∴$\frac{AE}{EB}$=$\frac{1}{2}$.
故选:A.

点评 本题考查线面平行的性质,考查比例的性质,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.若二进制数100y011和八进制数x03相等,则x+y=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知双曲线C的中心在原点,虚轴长为6,且以椭圆$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{5}$=1的焦点为顶点,则双曲线C的方程为${x}^{2}-\frac{{y}^{2}}{9}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若f(x)=x2+bx+c对任意实数x都有f(a+x)=f(a-x),则(  )
A.f(a)<f(a-1)<f(a+2)B.f(a-1)<f(a)<f(a+2)C.f(a)<f(a+2)<f(a-1)D.f(a+2)<f(a)<f(a-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知二次函数f(x)的最小值为1,且f(0)=f(2)=3.
(1)求f(x)的解析式;
(2)若f(x)在区间[3m,m+2]上不单调,求实数m的取值范围;
(3)求函数f(x)在区间[t-1,t]上的最小值g(t).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.用分数指数幂的形式表示$\sqrt{-a}$•a为(  )
A.-${a}^{\frac{3}{2}}$B.-$(-a)^{\frac{3}{2}}$C.-$(-a)^{\frac{2}{3}}$D.-${a}^{\frac{3}{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知向量$\overrightarrow{{e}_{1}}$、$\overrightarrow{{e}_{2}}$不共线,$\overrightarrow{a}$=2$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=m$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$,若$\overrightarrow{a}$∥$\overrightarrow{b}$,则实数m=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.6人排成一排,甲、乙、丙三人不能都站在一起的排列种数为(  )
A.${P}_{6}^{6}$B.${P}_{4}^{4}$•${P}_{3}^{3}$
C.${P}_{6}^{6}$-${P}_{4}^{4}$•${P}_{3}^{3}$D.${P}_{6}^{6}$-${P}_{3}^{3}•$${P}_{3}^{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若1∩α=A,l与b相交或异面,则b与α的位置关系为相交、平行或异面.

查看答案和解析>>

同步练习册答案