【题目】已知函数 .
(1)求时,的单调区间;
(2)若存在,使得对任意的,都有,求的取值范围,并证明.
【答案】(1)在为减函数,为增函数;(2),证明见解析
【解析】
(1)由得,对函数求导,得到, 令,用导数法方法判断其单调性,求出在上为增函数,再由,即可求出结果;
(2)先对函数求导,得到,根据题意,得到为在的极小值点,故,设,对函数求导,根据函数单调性,得到,推出,再令,用导数的方法求出其单调性,进而可得出结果.
(1)当时,,
,
令,则,
所以,由得;由得,
即函数在上单调递减,在上单调递增,
因此,所以在上单调递增;
即在上为增函数.
又因为,
所以当时,;当时,;
故在为减函数,为增函数.
(2) ,
因为对任意的恒成立,所以为在的极小值点,故①.
设,则当 时,,
所以在上为增函数,而,.
由①可知,从而 ,故.
又由,即,
所以
.
令,其中,则,为上的减函数,
故,而,
所以.
科目:高中数学 来源: 题型:
【题目】选修4-4 坐标系与参数方程选讲
在直角坐标系中,直线的参数方程(为参数),以坐标原点为极点,轴的非负半轴为极轴,建立极坐标系,曲线极坐标方程为.
(1)求直线的普通方程以及曲线的参数方程;
(2)当时,为曲线上动点,求点到直线距离的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a∈R,函数f(x)=(-x2+ax)ex(x∈R).
(1)当a=2时,求函数f(x)的单调区间;
(2)若函数f(x)在(-1,1)上单调递增,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥中,四边形是直角梯形,,,底面,,,,是的中点.
(1)求证:平面平面;
(2)上是否存在点,使得三棱锥的体积是三棱锥体积的.若存在,请说明点的位置;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在如图所示的多面体ABCDE,AB∥DE,AB⊥AD,△ACD是正三角形.AD=DE=2AB=2,EC=2,F是CD的中点.
(1)求证AF∥平面BCE;
(2)求直线AD与平面BCE所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某职称晋级评定机构对参加某次专业技术考试的100人的成绩进行了统计,绘制了频率分布直方图(如图所示),规定80分及以上者晋级成功,否则晋级失败.
晋级成功 | 晋级失败 | 合计 | |
男 | 16 | ||
女 | 50 | ||
合计 |
(1)求图中的值;
(2)根据已知条件完成下面列联表,并判断能否有的把握认为“晋级成功”与性别有关?
(3)将频率视为概率,从本次考试的所有人员中,随机抽取4人进行约谈,记这4人中晋级失败的人数为,求的分布列与数学期望.
(参考公式:,其中)
0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
0.780 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2-(a+1)x+alnx+1
(Ⅰ)若x=3是f(x)的极值点,求f(x)的极大值;
(Ⅱ)求a的范围,使得f(x)≥1恒成立.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知平面直角坐标系,直线过点,且倾斜角为,以为极点,轴的非负半轴为极轴建立极坐标系,圆的极坐标方程为.
(1)求直线的参数方程和圆的标准方程;
(2)设直线与圆交于、两点,若,求直线的倾斜角的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com