精英家教网 > 高中数学 > 题目详情

【题目】某产品自生产并投入市场以来,生产企业为确保产品质量,决定邀请第三方检测机构对产品进行质量检测,并依据质量指标Z来衡量产品的质量.时,产品为优等品;当时,产品为一等品;当时,产品为二等品.第三方检测机构在该产品中随机抽取500件,绘制了这500件产品的质量指标的条形图.用随机抽取的500件产品作为样本,估计该企业生产该产品的质量情况,并用频率估计概率.

1)从该企业生产的所有产品中随机抽取4件,求至少有1件优等品的概率;

2)现某人决定购买80件该产品.已知每件成本1000元,购买前,邀请第三方检测机构对要购买的80件产品进行抽样检测,买家、企业及第三方检测机构就检测方案达成以下协议:从80件产品中随机抽出4件产品进行检测,若检测出3件或4件为优等品,则按每件1600元购买,否则按每件1500元购买,每件产品的检测费用250元由企业承担.记企业的收益为X元,求X的分布列与数学期望.

【答案】(1);(2)分布列见解析,数学期望为41500.

【解析】

1)先求出从样本中随机取一件为优等品的概率,再求从该企业生产的所有产品中随机抽取4件,没有一件是优等品的概率,从而可求出至少有一件是优等品的概率.

2)由题意求出检测出3件或4件为优等品时及检测出的优等品低于3件时的的值,结合第一问求出,从而可得的分布列,即可计算其数学期望.

1)解:由题意知,500件产品中共有优等品件,

则从样本中随机取一件为优等品的概率为

所以从该企业生产的所有产品中随机抽取4件,没有一件是优等品的概率为

则随机抽取4件,至少有1件优等品的概率为.

2)解:检测出3件或4件为优等品时

检测出的优等品低于3件时,,由题意知

,故X的分布列为

47000

39000

所以数学期望.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的长轴长为,右顶点到左焦点的距离为分别为椭圆的左、右两个焦点.

1)求椭圆的方程;

2)已知椭圆的切线(与椭圆有唯一交点)的方程为,切线与直线和直线分别交于点,求证:为定值,并求此定值;

3)设矩形的四条边所在直线都和椭圆相切(即每条边所在直线与椭圆有唯一交点),求矩形的面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,是边长为2的正三角形,是等腰直角三角形,.

I)证明:平面平面ABC

II)点EBD上,若平面ACE把三棱锥分成体积相等的两部分,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)当时,求曲线处的切线方程;

(Ⅱ)设函数,试判断函数是否存在最小值,若存在,求出最小值,若不存在,请说明理由.

(Ⅲ)当时,写出的大小关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方形与正方形所成角的二面角的平面角的大小是是正方形所在平面内的一条动直线,则直线所成角的取值范围是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若不等式对任意的恒成立,求的取值范围;

2)当时,记的最小值为,正实数,,满足,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,已知点的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

1)求的普通方程和的直角坐标方程;

2)设曲线与曲线相交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C1的参数方程为φ为参数),以坐标原点O为极点,x轴的正半轴为极轴,建立极坐标系.

1)求C1的极坐标方程;

2)若C1与曲线C2ρ2sinθ交于AB两点,求|OA||OB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在①acosB+bcosA=cosC;②2asinAcosB+bsin2A=a;③△ABC的面积为S,且4S=(a2+b2-c2),这三个条件中任意选择一个,填入下面的问题中,并求解,在锐角ABC中,角ABC所对的边分别为abc,函数=2sinωxcosωx+2cos2ωx的最小正周期为πc在[0]上的最大值,求a-b的取值范围.注:如果选择多个条件分别解答,那么按第一个解答计分.

查看答案和解析>>

同步练习册答案