精英家教网 > 高中数学 > 题目详情

【题目】设函数, 已知曲线y=f(x)

处的切线与直线垂直。

(1) 的值;

(2) 若对任意x1,都有,求的取值范围.

【答案】(1) b=1(2) (,--1)∪(-1,1)

【解析】试题分析:(1)求出函数导数,由两直线垂直斜率之积为-1,解方程可得

(2)求出导数,对 讨论,①若 ,则 ;②若

,则 ;③若 三种情况分别求出单调区间,可得最小值,解不等式即可得到所求范围.

试题解析:(1)曲线y=f(x)在点(1,f(1))处的切线斜率为2,所以f′(1)=2,又f′(x)=ln x++1,即ln 1+b+1=2,所以b=1.

(2) g(x)的定义域为(0,+∞),

g′(x)=+(1-a)x-1=(x-1).

①若a≤,则≤1,故当x∈(1,+∞)时,g′(x)>0,g(x)在(1,+∞)上单调递增. 所以,对任意x≥1,都有g(x) >的充要条件为g(1) >,即-1>,解得a<--1或-1 <a≤

②若<a<1,则>1,故当x∈时,g′(x)<0;当x∈时,g′(x)>0.f(x)在上单调递减,在上单调递增.

所以,对任意x≥1,都有g(x) >的充要条件为g.而g=aln<a<1上恒成立,

所以<a<1

③若a>1,g(x)在[1,+∞)上递减,不合题意。

综上,a的取值范围是(,--1)∪(-1,1)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆O的方程为x2+y2=4,P是圆O上的一个动点,若线段OP的垂直平分线总是被平面区域|x|+|y|≥a覆盖,则实数a的取值范围是(
A.0≤a≤2
B.
C.0≤a≤1
D.a≤1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx+x2﹣ax(a∈R)
(1)a=3时,求函数f(x)的单调区间;
(2)若f(x)≤2x2恒成立,求实数a的取值范围;
(3)求证;lnn> + +1 +…+ (n∈N+)且n≥2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn , 若对于任意的n∈N* , 都有Sn=2an﹣3n.
(1)求证{an+3}是等比数列
(2)求数列{an}的通项公式;
(3)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】无穷等差数列{an}的各项均为整数,首项为a1、公差为d,Sn是其前n项和,3、21、15是其中的三项,给出下列命题:
①对任意满足条件的d,存在a1 , 使得99一定是数列{an}中的一项;
②存在满足条件的数列{an},使得对任意的n∈N* , S2n=4Sn成立;
③对任意满足条件的d,存在a1 , 使得30一定是数列{an}中的一项.
其中正确命题的序号为(
A.①②
B.②③
C.①③
D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设正项数列{an}的前n项和为Sn , 且满足
(1)计算a1 , a2 , a3的值,并猜想{an}的通项公式;
(2)用数学归纳法证明{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(
A.20π
B.24π
C.28π
D.32π

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)是定义在R上的偶函数,f(0)=0,当x>0时,f(x)=log x.
(1)求 f(﹣4)的函数值;
(2)求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,且三角形的面积为S= bccosA.
(1)求角A的大小;
(2)若c=8,点D在AC边上,且CD=2,cos∠ADB=﹣ ,求a的值.

查看答案和解析>>

同步练习册答案