精英家教网 > 高中数学 > 题目详情
若函数f(x)=x2•lga-2x+2在区间(1,2)内有且只有一个零点,那么实数a的取值范围是
 
分析:此题考查的是函数的零点存在问题.在解答的过程当中要先结合函数f(x)=x2•lga-2x+2在区间(1,2)内有且只有一个零点的条件,转化出不等关系,利用此不等关系即可获得问题的解答.
解答:解:由题意可知:函数f(x)=x2•lga-2x+2在区间(1,2)内有且只有一个零点,
当a=1时,函数f(x)=-2x+2在区间(1,2)内没有且零点.
当a≠1时,由于函数的对称轴为x=
1
lga

1
lga
≤1或
1
lga
≥2时,此时函数在区间(1,2)内单调
∴只需有f(1)•f(2)<0,
即lga•(4lga-2)<0,解得0<lga<
1
2
,即1<a<
10

1<
1
lga
<2
,即
10
<a<10
时,△=4-8lga=0,无解.
综上,1<a<
10

故答案为1<a<
10
点评:此题考查的是函数的零点存在问题.在解答的过程当中充分体现了数形结合的思想、问题转化的思想以及零点定理的相关知识.值得同学们体会反思.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数f(x)=x2+ax-1在x∈[1,3]是单调递减函数,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=|x2-4x|-a的零点个数为3,则a=
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=
-x2+2x+3
,则f(x)的单调递增区间是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=x2•lga-6x+2与X轴有且只有一个公共点,那么实数a的取值范围是
a=1或a=10
9
2
a=1或a=10
9
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•济南二模)下列命题:
①若函数f(x)=x2-2x+3,x∈[-2,0]的最小值为2;
②线性回归方程对应的直线
?
y
=
?
b
x+
?
a
至少经过其样本数据点(x1,y1),(x2,y2),…,(xn,yn)中的一个点;
③命题p:?x∈R,使得x2+x+1<0则¬p:?x∈R,均有x2+x+1≥0;
④若x1,x2,…,x10的平均数为a,方差为b,则x1+5,x2+5,…,x10+5的平均数为a+5,方差为b+25.
其中,错误命题的个数为(  )

查看答案和解析>>

同步练习册答案