精英家教网 > 高中数学 > 题目详情
2.设数列{an}满足an=3an-1+2(n≥2,n∈N*),且a1=2,bn=log3(an+1).
(1)求数列{an}的通项公式;
(2)求数列{anbn}的前n项和Sn

分析 (1)利用数列的递推关系式,推出{an+1}为等比数列数列{an}的通项公式.
(2)化简数列的通项公式,构造新数列,利用错位相减法求和,求解数列的和即可.

解答 解:(1)an=3an-1+2(n≥2,n∈N*),a1=2,∴an-1+1≠0,
可得$\frac{{a}_{n}+1}{{a}_{n-1}+1}=3$,
所以数列{an+1}以3为首项3为公比的等比数列;…(3分)
所以数列an的通项公式为:an=3n-1…(5分)
(2)由(1)知an=3n-1,bn=log3(an+1)=n.
,anbn=n(3n-1)=n•3n-n…(6分)
设An=1×3+2×32+…+n×3n
3An=1×32+2×33+…+n×3n+1
∴-2An=3+32+…+3n-n×3n+1=($\frac{1}{2}$-n)3n+1-$\frac{3}{2}$…(8分)
∴${A_n}=(\frac{n}{2}-\frac{1}{4}){3^{n+1}}+\frac{3}{4}$…(10分)
∴${S_n}={A_n}-\frac{n(n+1)}{2}=(\frac{n}{2}-\frac{1}{4}){3^{n+1}}-\frac{n^2}{2}-\frac{n}{2}+\frac{3}{4}$…(12分)

点评 本题考查数列的递推关系式以及数列求和的方法,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.设角α的终边经过点P(sin2,cos2),则$\sqrt{2(1-sinα)}$的值等于(  )
A.sin1B.cos1C.2sin1D.2cos1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在直角坐标系xOy中,以原点O为极点,x轴的非负半轴为极轴建立极坐标系.已知直线C1:$\left\{\begin{array}{l}{x=1+tcosα}\\{y=tsinα}\end{array}\right.$(t为参数),圆C2:$\left\{\begin{array}{l}{x=cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数).
(Ⅰ)当α=$\frac{π}{3}$时,求C1被C2截得的线段的长;
(Ⅱ)过坐标原点O作C1的垂线,垂足为A,当α变化时,求A点轨迹的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数$f(x)=\left\{\begin{array}{l}2{x^3}+3{x^2}+m,0≤x≤1\\ mx+5,x>1\end{array}\right.$,若函数f(x)有且仅有两个零点,则实数m的取值范围是(-5,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知点A(-2,-1),B(2,1),直线AM,BM相交于点M,且它们的斜率之积为-$\frac{1}{2}$,点M的轨迹为曲线H.
(1)求曲线H的方程;
(2)过点P(-2,1)作斜率为k1,k2的两条直线l1,l2分别与曲线H交于C,D两点,且C,D关于原点对称,设点Q(-2,0)到直线l1,l2的距离分别为d1,d2且d1>d2,求k1的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知四棱锥P-ABCD,底面ABCD是∠A=60°、边长为a的菱形,又PD⊥底面 ABCD,且PD=CD,点M、N分别是棱AD、PC的中点.
(1)证明:DN∥平面PMB;
(2)证明:平面PMB⊥平面PAD;
(3)直线PB与平面PCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.己知向量$\overrightarrow{a}$=(2,sinθ),$\overrightarrow{b}$=(1,cosθ),θ∈(0,$\frac{π}{2}$)
(1)若$\overrightarrow{a}$$•\overrightarrow{b}$=$\frac{7}{3}$,求sinθ+cosθ的值;
(2)若$\overrightarrow{a}$∥$\overrightarrow{b}$,求sin(2θ+$\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.我国古代数典籍《九章算术》“盈不足”中有一道两鼠穿墙问题:“今有垣厚十尺,两鼠对穿,初日各一尺,大鼠日自倍,小鼠日自半,问几何日相逢?”上述问题中,两鼠在第几天相逢.(  )
A.3B.4C.5D.6、

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=x2+4x+a-5,g(x)=m•4x-1-2m+7.
(1)若函数f(x)在区间[-1,1]上存在零点,求实数a的取值范围;
(2)当a=0时,若对任意的x1∈[1,2],总存在x2∈[1,2],使f(x1)=g(x2)成立,求实数m的取值范围;
(3)若y=f(x)(x∈[t,2])的置于为区间D,是否存在常数t,使区间D的长度为6-4t?若存在,求出t的值;若不存在,请说明理由.
(注:区间[p,q]的长度q-p)

查看答案和解析>>

同步练习册答案