Óɱ¶½Ç¹«Ê½£¬¿ÉÖªcos2x¿ÉÒÔ±íʾΪcosxµÄ¶þ´Î¶àÏîʽ£®

¶ÔÓÚcos3x£¬ÎÒÃÇÓÐ

¿É¼ûcos3x¿ÉÒÔ±íʾΪcosxµÄÈý´Î¶àÏîʽ£®Ò»°ãµØ£¬´æÔÚÒ»¸ön´Î¶àÏîʽPn(t)£¬Ê¹µÃ£¬ÕâЩ¶àÏîʽPn(t)³ÆΪÇбÈÑ©·ò¶àÏîʽ£®

(¢ñ)ÇóÖ¤£ºsin3x£½3sinx£­4sin3x£»

(¢ò)ÇëÇó³öP4(t)£¬¼´ÓÃÒ»¸öcosxµÄËĴζàÏîʽÀ´±íʾcos4x£»

(¢ó)ÀûÓýáÂÛ£¬Çó³ösin18¡ãµÄÖµ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Óɱ¶½Ç¹«Ê½cos2x=2cos2x-1£¬¿ÉÖªcos2x¿ÉÒÔ±íʾΪcosxµÄ¶þ´Î¶àÏîʽ£®¶ÔÓÚcos3x£¬ÎÒÃÇÓÐ
cos3x=cos£¨2x+x£©
=cos2xcosx-sin2xsinx
=£¨2cos2x-1£©cosx-2£¨sinxcosx£©sinx
=2cos3x-cosx-2£¨1-cos2x£©cosx
=4cos3x-3cosx
¿É¼ûcos3x¿ÉÒÔ±íʾΪcosxµÄÈý´Î¶àÏîʽ£®Ò»°ãµØ£¬´æÔÚÒ»¸ön´Î¶àÏîʽPn£¨t£©£¬Ê¹µÃcosnx=Pn£¨cosx£©£¬ÕâЩ¶àÏîʽPn£¨t£©³ÆΪÇбÈÑ©·ò¶àÏîʽ£®
£¨I£©ÇóÖ¤£ºsin3x=3sinx-4sin3x£»
£¨II£©ÇëÇó³öP4£¨t£©£¬¼´ÓÃÒ»¸öcosxµÄËĴζàÏîʽÀ´±íʾcos4x£»
£¨III£©ÀûÓýáÂÛcos3x=4cos3x-3cosx£¬Çó³ösin18¡ãµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Óɱ¶½Ç¹«Ê½cos2x=2cos2x-1£¬¿ÉÖªcos2x¿ÉÒÔ±íʾΪcosxµÄ¶þ´Î¶àÏîʽ£®
¶ÔÓÚcos3x£¬ÎÒÃÇÓÐ
cos3x=cos£¨2x+x£©=cos2xcosx-sin2xsinx
=£¨2cos2x-1£©cosx-2£¨sinxcosx£©sinx
=2cos3x-cosx-2£¨1-cos2x£©cosx
=4cos3x-3cocs£®
¿É¼ûcos3x¿ÉÒÔ±íʾΪcosxµÄÈý´Î¶àÏîʽ£®
Ò»°ãµØ£¬´æÔÚÒ»¸ön´Î¶àÏîʽPn£¨t£©£¬Ê¹µÃcosnx=Pn£¨cosx£©£¬ÕâЩ¶àÏîʽPn£¨t£©³ÆΪÇбÈÑ©·ò£¨P£®L£®Tschebyscheff£©¶àÏîʽ£®
£¨1£©Çë³¢ÊÔÇó³öP4£¨t£©£¬¼´ÓÃÒ»¸öcosxµÄËĴζàÏîʽÀ´±íʾcos4x£®
£¨2£©»¯¼òcos£¨60¡ã-¦È£©cos£¨60¡ã+¦È£©cos¦È£¬²¢ÀûÓô˽á¹ûÇósin20¡ãsin40¡ãsin60¡ãsin80¡ãµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2010-2011ÁÉÄþÊ¡´óÁ¬ÊÐЭ×÷Ìå¸ßÒ»4ÔÂÔ¿¼ÊýѧÀí¾í ÌâÐÍ£º½â´ðÌâ

£¨£¨±¾Ð¡ÌâÂú·Ö12·Ö£©
Óɱ¶½Ç¹«Ê½£¬¿ÉÖª¿ÉÒÔ±íʾΪµÄ¶þ´Î¶àÏîʽ.
¶ÔÓÚ£¬ÎÒÃÇÓÐ



¿É¼û¿ÉÒÔ±íʾΪµÄÈý´Î¶àÏîʽ¡£Ò»°ãµØ£¬´æÔÚÒ»¸ö´Î¶àÏîʽ£¬Ê¹µÃ£¬ÕâЩ¶àÏîʽ³ÆΪÇбÈÑ©·ò¶àÏîʽ.
£¨I£©ÇóÖ¤£º£»
£¨II£©ÇëÇó³ö£¬¼´ÓÃÒ»¸öµÄËĴζàÏîʽÀ´±íʾ£»
(III)ÀûÓýáÂÛ£¬Çó³öµÄÖµ.

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2010-2011ÁÉÄþÊ¡´óÁ¬ÊÐЭ×÷Ìå¸ßÒ»4ÔÂÔ¿¼ÊýѧÀí¾í ÌâÐÍ£º½â´ðÌâ

£¨£¨±¾Ð¡ÌâÂú·Ö12·Ö£©

Óɱ¶½Ç¹«Ê½£¬¿ÉÖª¿ÉÒÔ±íʾΪµÄ¶þ´Î¶àÏîʽ.

¶ÔÓÚ£¬ÎÒÃÇÓÐ

¿É¼û¿ÉÒÔ±íʾΪµÄÈý´Î¶àÏîʽ¡£Ò»°ãµØ£¬´æÔÚÒ»¸ö´Î¶àÏîʽ£¬Ê¹µÃ£¬ÕâЩ¶àÏîʽ³ÆΪÇбÈÑ©·ò¶àÏîʽ.

£¨I£©ÇóÖ¤£º£»

£¨II£©ÇëÇó³ö£¬¼´ÓÃÒ»¸öµÄËĴζàÏîʽÀ´±íʾ£»

(III)ÀûÓýáÂÛ£¬Çó³öµÄÖµ.

 

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸