精英家教网 > 高中数学 > 题目详情
5.已知f(x)是定义在R上的奇函数,且f(x)=f(x+2),当x∈(0,1)时,f(x)=tan(x-$\frac{π}{6}$),则函数f(x)在区间[0,4]上的零点个数是(  )
A.6B.7C.8D.9

分析 由题意可推出f(x)在[0,4]上的零点为0,2,4,$\frac{π}{6}$,2-$\frac{π}{6}$,4-$\frac{π}{6}$,即可得出结论.

解答 解:∵当x∈(0,1)时,f(x)=tan(x-$\frac{π}{6}$),
∴f(x)在(0,1)上零点为$\frac{π}{6}$,
又∵函数f(x)是奇函数,
∴f(x)在(-1,0)上零点为-$\frac{π}{6}$,
又∵f(x+2)=f(x),
∴f(x)在[0,4]上的零点为0,2,4,$\frac{π}{6}$,2-$\frac{π}{6}$,4-$\frac{π}{6}$,
故f(x)在[0,4]上的零点个数是6;
故选:A.

点评 本题考查了函数的零点的个数的判断,同时考查了函数的性质的综合应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.设$f(x)=\left\{\begin{array}{l}{x^2}({0≤x<1})\\ 2-x({1≤x≤2})\end{array}\right.$则$\int_0^2{f(x)}dx$等于(  )
A.$\frac{3}{4}$B.$\frac{4}{5}$C.$\frac{5}{6}$D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知$f(n)=1+\frac{1}{2}+\frac{1}{3}+…+\frac{1}{n}(n∈{N_+})$,用数学归纳法证明$f({2^n})>\frac{n+1}{2}$时,f(2k+1)-f(2k)等于$\frac{1}{{{2^k}+1}}+\frac{1}{{{2^k}+2}}+…+\frac{1}{{{2^{k+1}}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.(理科)如图,在空间四面体ABCD中,若E,F,G,H分别是AB,BD,CD,AC的中点,且AD⊥BC
(1)求证:四边形EFGH是矩形.
(2)求证:AD∥平面EFGH.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.高三年级有8个班级,分派4位数学老师任教,每个教师教两个班,则不同的分派方法有(  )
A.${P}_{8}^{2}$${P}_{6}^{2}$${P}_{4}^{2}$${P}_{2}^{2}$B.${C}_{8}^{2}$${C}_{6}^{2}$${C}_{4}^{2}$${C}_{2}^{2}$
C.${C}_{8}^{2}$${C}_{6}^{2}$${C}_{4}^{2}$${C}_{2}^{2}$${P}_{4}^{4}$D.$\frac{C_8^2C_6^2C_4^2C_2^2}{4!}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知矩形ABCD中,AB=6,BC=4,E,F分别是AB,CD上两动点,且AE=DF,把四边形BCFE沿EF折起,使平面BCFE⊥平面ABCD,若折得的几何体的体积最大,则该几何体外接球的体积为(  )
A.28πB.$\frac{{28\sqrt{7}π}}{3}$C.32πD.$\frac{{64\sqrt{2}π}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知双曲线${x^2}-\frac{y^2}{b^2}=1\;(b>0)$的一条渐近线的方程为y=3x,则b=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知$\overrightarrow{a}$=($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),|$\overrightarrow{b}$|=1,|$\overrightarrow{a}$+2$\overrightarrow{b}$|=2,则$\overrightarrow b$在$\overrightarrow a$方向上的投影为-$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图,正方体ABCD-A1B1C1D1的棱长为a(a>1),动点E,F在棱A1B1上,动点P,Q分别在棱CD,AD上,若EF=1,A1F=x,DP=y,DQ=z(x,y,z均大于零),则四面体PEFQ的体积(  )
A.与x,y,z都有关B.与x有关,与y,z无关
C.与y有关,与x,z无关D.与z有关,与x,y无关

查看答案和解析>>

同步练习册答案