精英家教网 > 高中数学 > 题目详情
正方体ABCD-A1B1C1D1的棱长为a,点M在AC1上且=,N为B1B的中点,则||为(  )
A.aB.aC.aD.a
A
【思路点拨】建立空间直角坐标系,利用向量的坐标运算解决.
解:以D为原点建立如图所示的空间直角坐标系Dxyz,

则A(a,0,0),C1(0,a,a),N(a,a,).设M(x,y,z).
∵点M在AC1上且=,
∴(x-a,y,z)=(-x,a-y,a-z),
∴x=a,y=,z=.
于是M(,,),
∴||=
=a.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,是以为直径的半圆上异于的点,矩形所在的平面垂直于半圆所在的平面,且

(1)求证:
(2)若异面直线所成的角为,求平面和平面所成的锐二面角的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知正方形ABCD的边长为2,AC∩BD=O.将正方形ABCD沿对角线BD折起,使AC=a,得到三棱锥A-BCD,如图所示.

(1)当a=2时,求证:AO⊥平面BCD.
(2)当二面角A-BD-C的大小为120°时,求二面角A-BC-D的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱(侧棱和底面垂直的棱柱)中,,,且满足.

(1)求证:平面侧面
(2)求二面角的平面角的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图几何体中,四边形为矩形,.

(1)若的中点,证明:
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,四棱锥P—ABCD中,ABAD,CDAD,PA底面ABCD,PA=AD=CD=2AB=2,M为PC的中点。

(1)求证:BM∥平面PAD;
(2)在侧面PAD内找一点N,使MN平面PBD;
(3)求直线PC与平面PBD所成角的正弦。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知l∥α,且l的方向向量为u=(2,m,1),平面α的法向量为v=(1,,2),则m=     .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正三棱柱中,已知,则异面直线所成角的正弦值为(  )
A.1B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设平面α的法向量为(1,2,-2),平面β的法向量为(-2,-4,k),若α∥β,则k等于(  )
A.2B.-4C.4D.-2

查看答案和解析>>

同步练习册答案