分析 (1)在△ABC中,利用正弦定理求得2sinAcosC+sinC=2sinB,再由sinB=sin(A+C),求得cosA=$\frac{1}{2}$,可得A的值.
(2)利用余弦定理、基本不等式求得 bc≤1,再由三角形面积公式求得它的最大值.
解答 (本题满分为10分)
解:(1)在△ABC中,∵2acosC+c=2b,
∴由正弦定理可得:2sinAcosC+sinC=2sinB.-----(1分)
又sinB=sin(A+C),∴2sinAcosC+sinC=2sinAcosC+2cosAsinC,
∴sinC=2cosAsinC.-----(3分)
∵sinC≠0,
∴cosA=$\frac{1}{2}$,
∵A是三角形的内角,
∴A=$\frac{π}{3}$.--(5分)
(2)∵a2=b2+c2-2bccosA=b2+c2-bc≥2bc-bc=bc,
∴bc≤1.-----(8分)
∴S=$\frac{1}{2}$bcsinA≤$\frac{1}{2}$×1×$\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{4}$,即△ABC面积的最大值为$\frac{\sqrt{3}}{4}$.-----(10分)
点评 本题主要考查三角函数的恒等变换及化简求值,正弦定理、余弦定理、基本不等式的应用,根据三角函数的值求角,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | f(2)<f(e)ln2,2f(e)>f(e2) | B. | f(2)<f(e)ln2,2f(e)<f(e2) | ||
C. | f(2)>f(e)ln2,2f(e)<f(e2) | D. | f(2)>f(e)ln2,2f(e)>f(e2) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 16 | B. | 20 | C. | 32 | D. | 40 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 210种 | B. | 630种 | C. | 420种 | D. | 840种 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
组别 | 锻炼次数 | 频数(人) | 频率 |
1 | [2,6) | 2 | 0.04 |
2 | [6,10) | 11 | 0.22 |
3 | [10,14) | 16 | c |
4 | [14,18) | 15 | 0.30 |
5 | [18,22) | d | e |
6 | [22,26] | 2 | 0.04 |
合计 | M | 1.00 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com