分析 数列{an}满足an+1=2+an(n∈N*),可得数列{an}是公差为2的等差数列,又a2=3a5,可得an=2n-13.由an≥0,可得当n=6时,Sn取得最小值,k=6.去掉绝对值符号利用等差数列的通项公式及其性质即可得出.
解答 解:∵数列{an}满足an+1=2+an(n∈N*),∴数列{an}是公差为2的等差数列,又a2=3a5,∴a1+2=3(a1+4×2),解得a1=-11,∴an=-11+2(n-1)=2n-13.
由an≥0,解得n≥7,n≤6时,an<0.因此当n=6时,Sn取得最小值,
∵对于任意的n∈N*,总有Sn≥Sk成立,
∴k=6.
∴|ak|+|ak+1|+…+|a15|=-a6+a7+…+a15=9a11-a6=9×(2×11-13)-(2×6-13)=82.
故答案为:82.
点评 本题考查了等差数列的通项公式及其性质、数列的单调性、绝对值数列求和问题,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | (-∞,-2$\sqrt{2}$)∪(2$\sqrt{2}$,+∞) | B. | (2$\sqrt{2}$,3) | C. | (2,3) | D. | (2$\sqrt{2}$,4) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{2}{h}$=$\frac{1}{R}$+$\frac{1}{r}$ | B. | $\frac{1}{h}$=$\frac{1}{R}$+$\frac{1}{r}$ | C. | $\frac{1}{r}$=$\frac{1}{R}$+$\frac{1}{h}$ | D. | $\frac{2}{R}$=$\frac{1}{r}$+$\frac{1}{h}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{3}{5}$ | B. | $\frac{\sqrt{21}}{7}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 15° | B. | 30° | C. | 45° | D. | 60° |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com