精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)a=1时,求函数在(2)处的切线方程:

(2)a=2时,求函数的单调区间和极值;

(3)上是单调增函数,求实数a的取值范围.

【答案】2 2上单调递增,fx)无极值. 3

【解析】

1)当时,求导函数,则函数在处的切线的斜率即为导数值,根据点斜式方程即可求出切线方程;

2)先求出函数的定义域,把代入到函数中并求出的值,在定义域内讨论导函数的正负得到函数的单调区间及极值;

3)把代入到中得到的解析式,求出其导函数大于0即函数单调,可设,求出其导函数在上单调递减,求出的最大值,列出不等数求出解集即为的取值范围.

解:(1)当时,函数

函数处的切线斜率为,切点为

函数处的切线方程为:

2)函数的定义域为

时,

上单调递增,无极值.

3)由,得

又函数上单调增函数,

上恒成立,

即不等式上恒成立;

也即上恒成立,

为减函数,

所以1

所以

的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】对于以下四个命题:①两条异面直线有无数条公垂线;②直线在平面内的射影是直线;③如果两条直线在同一个平面内的射影平行,那这两条直线平行;④过两条异面直线的一条有且仅有一个平面与已知直线平行;上述命题中为真命题的个数为( )个

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,直线过定点.

1)若与圆相切,求的方程;

2)若与圆相交于两点,求三角形面积的最大值,并求此时的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,为直角,相交于点.

1)试用表示向量

2)在线段上取一点,在线段上取一点,使得直线,设,求的值;

3)若,过作线段,使得的中点,且,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是一旅游景区供游客行走的路线图,假设从进口开始到出口,每遇到一个岔路口,每位游客选择其中一条道路行进是等可能的.现有甲、乙、丙、丁共名游客结伴到旅游景区游玩,他们从进口的岔路口就开始选择道路自行游玩,并按箭头所指路线行走,最后到出口集中,设点是其中的一个交叉路口点.

(1)求甲经过点的概率;

(2)设这名游客中恰有名游客都是经过点,求随机变量的概率分布和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数.

(1)若,求函数的单调区间;

(2)若恒成立,求实数的取值范围;

(3)设为曲线上两点,且,设直线斜率为,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一次足球邀请赛共安排了支球队参加,每支球队预定的比赛场数分别是,…,若任两支球队之间至多安排了一场比赛,则称是一个“有效安排”证明是一个有效安排,且,则可去掉一支球队,并重新调整各队之间的对局情况,使也是一个有效安排

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】出租车几何学是由十九世纪的赫尔曼·闵可夫斯基所创立的.在出租车几何学中,点还是形如的有序实数对,直线还是满足的所有组成的图形,角度大小的定义也和原来一样.直角坐标系内任意两点,定义它们之间的一种距离;到两点PQ距离相等的点的轨迹称为线段PQ垂直平分线.已知点,请解决以下问题:

1)求线段上一点到原点距离

2)写出线段AB垂直平分线的轨迹方程,并作出大致图像;

3)定义:若三角形三边的垂直平分线交于一点,则该点称为三角形的外心.试判断 外心是否存在,如果存在,求出外心;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点与点在直线的两侧,给出以下结论:①;②当时,有最小值,无最大值;③;④当时,的取值范围是,正确的个数为(

A.1B.2C.3D.以上都不对

查看答案和解析>>

同步练习册答案