【题目】如图,已知三棱锥A-BPC中,,M为AB的中点,D为PB的中点,且为正三角形.
(1)求证:平面APC;
(2)若,,求三棱锥D-BCM的体积.
【答案】(1)证明见解析;(2)
【解析】
(1)因为M为AB的中点,D为PB的中点,由中位线定理可得,再由线面平行的判定定理即可证明;
(2)根据题意得到平面BCD的距离为的长,由三棱锥D-BCM的体积即为三棱锥M-BCD的体积,由题设条件求出的长,及三角形BCD的面积,由椎体体积公式代入数据求解即可.
(1)证明:因为M为AB的中点,D为PB的中点,
所以MD是的中位线,.
又平面APC,平面APC,
所以平面APC.
(2)在等边三角形PMB中,D为PB的中点,
,,
又,平面PBC,,
平面PBC,平面PBC,
平面PBC,,
又,平面PAC,,
平面PAC,平面PBC,.
平面PBC,即MD是三棱锥M-DBC的高.
又因为,M为AB的中点,为正三角形,
所以,,
由平面APC,可得,
在直角三角形PCB中,由,可得.
于是,
所以.
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,底面ABCD为边长为2的菱形,∠DAB=60°,∠ADP=90°,面ADP⊥面ABCD,点F为棱PD的中点.
(1)在棱AB上是否存在一点E,使得AF∥面PCE,并说明理由;
(2)当二面角D﹣FC﹣B的余弦值为时,求直线PB与平面ABCD所成的角.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知平面上的线段及点,任取上一点,线段长度的最小值称为点到线段的距离,记作.请你写出到两条线段,距离相等的点的集合,,,其中,,,,,是下列两组点中的一组.对于下列两种情形,只需选做一种,满分分别是① 3分;② 5分.① ,,,;② ,,,.你选择第_____种情形,到两条线段,距离相等的点的集合_____________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆,、分别是椭圆短轴的上下两个端点;是椭圆的左焦点,P是椭圆上异于点、的点,是边长为4的等边三角形.
(1)写出椭圆的标准方程;
(2)设点R满足:,.求证:与的面积之比为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数,若存在区间,使得,则称函数为“可等域函数”,区间为函数的一个“可等域区间”.给出下列4个函数:
①;②; ③; ④.
其中存在唯一“可等域区间”的“可等域函数”为( )
(A)①②③ (B)②③ (C)①③ (D)②③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的左、右焦点分别为,,过且垂直于轴的焦点弦的弦长为,过的直线交椭圆于,两点,且的周长为.
(1)求椭圆的方程;
(2)已知直线,互相垂直,直线过且与椭圆交于点,两点,直线过且与椭圆交于,两点.求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com