精英家教网 > 高中数学 > 题目详情

【题目】已知函数的图象在处的切线方程为,其中是自然对数的底数.

(1)若对任意的,都有成立,求实数的取值范围;

(2)若函数的两个零点为,试判断的正负,并说明理由.

【答案】(1).(2)见解析

【解析】试题分析:(1)由解得.由题可得恒成立,分别求得两边函数的值域,运用恒成立思想,即可得到k的范围

(2)由题意知,函数 是函数的两个零点,易得函数在区间在区间上单调递减.只需证明即可.

试题解析: (1)由题得,

∵函数在处的切线方程为

,∴.

依题意, 对任意的都成立,

,即对任意的都成立,从而.

又不等式整理可得, .

.

,得

时, 单调递减;

时, 单调递增.

.

综上所述,实数的取值范围为.

(2)结论是.

理由如下:由题意知,函数

易得函数在区间上单调递增,在区间上单调递减.

∴只需证明即可.

是函数的两个零点,

相减,得.

不妨令

,∴

即证

即证.

在区间上单调递增.

.

综上所述,函数总满足.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥P﹣ABCD的底面是矩形,侧面PAB是正三角形,且平面PAB⊥平面ABCD,E是PA的中点,AC与BD的交点为M.

(1)求证:PC∥平面EBD;
(2)求证:BE⊥平面AED.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 且满足Sn=2an+n(n∈N*).
(1)求证数列{an﹣1}是等比数列,并求数列{an}的通项公式;
(2)若bn=log2(﹣an+1),求数列{ }的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|x﹣a|+|x﹣5|.
(1)当a=1时,求f(x)的最小值;
(2)如果对任意的实数x,都有f(x)≥1成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=ax2﹣(2a+1)x+a+1对于a∈[﹣1,1]时恒有f(x)<0,则实数x的取值范围是(
A.(1,2)
B.(﹣∞,1)∪(2,+∞)
C.(0,1)
D.(﹣∞,0)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某电力部门需在A、B两地之间架设高压电线,因地理条件限制,不能直接测量A、B两地距离.现测量人员在相距 km的C、D两地(假设A、B、C、D在同一平面上)测得∠ACB=75°,∠BCD=45°,∠ADC=30°,∠ADB=45°(如图),假如考虑到电线的自然下垂和施工损耗等原因,实际所须电线长度为A、B距离的 倍,问施工单位应该准备多长的电线?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn , 且Sn=n2﹣4n﹣5.
(1)求数列{an}的通项公式;
(2)设bn=|an|,数列{bn}的前n项和为Tn , 求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从数字1,2,3,4,5中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=2x3﹣3(a+1)x2+6ax+8,其中a∈R.已知f(x)在x=3处取得极值.
(1)求f(x)的解析式;
(2)求f(x)在点A(1,16)处的切线方程.

查看答案和解析>>

同步练习册答案