精英家教网 > 高中数学 > 题目详情
14.在平面直角坐标系xOy中,将曲线$\left\{\begin{array}{l}{x=4cosα}\\{y=sinα}\end{array}\right.$(α为参数)上的每一点纵坐标不变,横坐标变为原来的一半,然后整个图象向右平移1个单位,最后横坐标不变,纵坐标变为原来的2倍得到曲线C1,以射线Ox为极轴建立极坐标系,曲线C2的极坐标方程是ρ=4sinθ.
(1)分别写出曲线C1,C2的普通方程;
(2)求C1和C2的公共弦的长度.

分析 (1)先求出变换后的C1的参数方程,再求出对应的普通方程,再把C2的极坐标方程化为普通方程即可,
(2)C1和C2公共弦所在直线为2x-4y+3=0,利用点到直线的距离公式及弦长公式求出公共弦长.

解答 解:(1)曲线$\left\{\begin{array}{l}{x=4cosα}\\{y=sinα}\end{array}\right.$(α为参数)上的每一点纵坐标不变,
横坐标变为原来的一半得到$\left\{\begin{array}{l}{x=2cosα}\\{y=sinα}\end{array}\right.$,然后整个图象向右平移1个单位得到$\left\{\begin{array}{l}{x=2cosα+1}\\{y=sinα}\end{array}\right.$,
最后横坐标不变,纵坐标变为原来的2倍得到$\left\{\begin{array}{l}{x=2cosα+1}\\{y=2sinα}\end{array}\right.$,所以,C1为; (x-1)2+y2=4,
又C2为ρ=4sinθ,即x2+y2=4y,
(2)C1和C2公共弦所在直线为2x-4y+3=0,
所以,(1,0)到2x-4y+3=0距离为$\frac{\sqrt{5}}{2}$,所以,公共弦长为2$\sqrt{4-\frac{5}{4}}$=$\sqrt{11}$.

点评 本题考查函数图象的变换,以及把极坐标方程化为普通方程的方法,点到直线的距离公式、弦长公式的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.在△ABC中,∠B=60°,b=7且S△ABC═10$\sqrt{3}$,求其余两边的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知a,b为常数,且a≠0,f(x)=ax2+bx,f(2)=0,方程f(x)=x有两个相等实根.
(1)求函数f(x)的解析式;
(2)当x∈(-1,2]时,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.等差数列{an}中,a1=1,a7=-23,若数列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n项和为-$\frac{14}{55}$,则n=(  )
A.14B.15C.16D.18

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\frac{2}{3}$x3+x2+ax+1在(-1,0)上有两个极值点x1,x2,且x1<x2
(1)求实数a的取值范围;
(2)证明:当-$\frac{1}{2}$<x<0 时,f(x)>$\frac{11}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若某几何体的三视图如图所示,则此几何体的体积等于(  )
A.$\frac{75}{2}$B.30C.75D.15

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在直角坐标系xoy中,直角l的参数方程为$\left\{\begin{array}{l}{x=3+tsinα}\\{y=\sqrt{5}+tcosα}\end{array}\right.$,(t为参数).在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为ρ=2$\sqrt{5}$sinθ.
(Ⅰ)求圆C的直角坐标方程;
(Ⅱ)设圆C与直线l交于点A、B,若点P的坐标为(3,$\sqrt{5}$),当$\frac{π}{4}$≤α≤$\frac{π}{3}$时,求|PA|-|PB|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设全集U是实数集R,M={x|y=ln(x2-2x) },N={y|y=$\sqrt{x}+1$},则图中阴影部分表示的集合是(  )
A.{x|-2≤x<2}B.{x|1<x≤2}C.{x|1≤x≤2}D.{x|x<1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.中秋节前几天,小毛所在的班级筹划组织一次中秋班会,热心的小毛受班级同学委托,去一家小礼品店为班级的三个小组分别采购三种小礼物:中国结、记事本和笔袋(每种礼物的品种和单价都相同).
三个小组给他的采购计划各不相同,各种礼物的采购数量及价格如下表所示:
  中国结(个) 记事本(本) 笔袋(个) 合计(元)
 小组A 2 1 0 10
 小组B 1 3 1 10
 小组C 0 5 2 30
为了结账,小毛特意计算了各小组的采购总价(见上表合计栏),可是粗心的小毛却不慎抄错了其中一个数字.第二天,当他按照自己的记录去向各小组报销的时候,有同学很快发现其中有错.发现错误的同学并不知道三种小礼物的单价,那么他是如何作出判断的呢?请你用所学的行列式的知识对此加以说明.

查看答案和解析>>

同步练习册答案