精英家教网 > 高中数学 > 题目详情
设f(x)=(1+x)m+(1+x)n,(m,n∈N*且m≥2,n≥2)的展开式中x项系数为18,则f(x)中含x2项系数的最小值是
72
72
分析:利用二项式定理求出展开式中x项系数为m+n=18,含x2项系数
m2-m+n2-n
2
,再利用基本不等式求出其最小值即可.
解答:解:f(x)=1+Cm1x+Cm2x2+…Cmmxm+1+Cn1x+Cn2x2+…+Cnnxn
=2+(m+n)x+
m2-m+n2-n
2
x2+…
由已知,m+n=18,
由m2+n2≥2mn,得2m2+2n2≥m2+n2+2mn=(m+n)2=324,
于是 m2+n2≥162.
所以含x2项系数
m2-m+n2-n
2
=
m2+n2-18
2
162-18
2
=72

故答案为:72.
点评:本题考查二项式定理,基本不等式求最值.考查计算、配凑转化的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=loga(1-x),g(x)=loga(1+x),(a>0且a≠1).
(Ⅰ)设函数F(x)=f(x)-g(x),判断函数F(x)的奇偶性并证明;
(Ⅱ)若关于x的方程g(m+2x-x2)=f(x)有实数根,求实数m的范围;
(Ⅲ)当a>1时,不等式f(n-x)>
12
g(x)对任意x∈[0,1]恒成立,求实数n的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在R上的偶函数,且f(2+x)=f(2-x),当x∈[-2,0)时,f(x)=(
2
2
)
x
-1,若在区间(-2,6)内的关于x的方程f(x)-logga(x+2)=0(a>0且a≠1)恰有4个不同的实数根,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•韶关二模)定义符号函数sgnx=
1,x>0
0,x=0
-1,x<0
,设f(x)=
sgn(
1
2
-x)+1
2
f1(x)+
sgn(x-
1
2
)+1
2
•f2(x),x∈[0,1],其中f1(x)=x+
1
2
,f2(x)=2(1-x),若f[f(a)]∈[0,
1
2
)
,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源:徐州模拟 题型:解答题

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为2
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案