精英家教网 > 高中数学 > 题目详情
17.下列四个函数中,在其定义域上既是奇函数又是单调递增函数的是(  )
A.y=exB.y=log2xC.y=sinxD.y=x3

分析 根据函数奇偶性和单调性的定义和性质进行判断即可.

解答 解:A.y=ex是非奇非偶函数,不满足条件.
B.y=log2x是非奇非偶函数,不满足条件.
C.y=sinx是奇函数,在定义域上不是单调函数,不满足条件.
D.y=x3是奇函数,定义域上单调递增,满足条件.
故选:D

点评 本题主要考查函数奇偶性和单调性的判断,要求熟练掌握常见函数的奇偶性和单调性的性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.在如图所示的几何体中,四边形ABCD为正方形,四边形ABEF为直角梯形,且AF∥BE,AB⊥BE,平面ABCD∩平面ABEF=AB,AB=BE=2AF=2.
(Ⅰ)求证:AC∥平面DEF;
(Ⅱ)若二面角D-AB-E为直二面角,
( i)求直线AC与平面CDE所成角的大小;
( ii)棱DE上是否存在点P,使得BP⊥平面DEF?若存在,求出$\frac{DP}{DE}$的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图是正四面体的平面展开图,G,H,M,N分别为DE,BE,EF,EC的中点,在这个正四面体中,有以下结论:
①GH与EF平行;
②BE与MN为异面直线;
③GH与AF成60°角;
④MN∥平面ADF;
其中正确结论的序号是③④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设 a∈R,若i(1+ai)=2+i,则a=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设函数f(x)=ln(1+ax)+bx,g(x)=f(x)-bx2
(Ⅰ)若a=1,b=-1,求函数f(x)的单调区间;
(Ⅱ)若曲线y=g(x)在点(1,ln3)处的切线与直线11x-3y=0平行.
(i)  求a,b的值;
(ii)求实数k(k≤3)的取值范围,使得g(x)>k(x2-x)对x∈(0,+∞)恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知i为虚数单位,则复数i(1-i)=1+i.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在三棱锥P-ABC中,PA⊥平面ABC,AB=AC=2,BC=2$\sqrt{3}$,M,N分别为BC,AB中点.
(I)求证:MN∥平面PAC
(II)求证:平面PBC⊥平面PAM
(III)在AC上是否存在点E,使得ME⊥平面PAC,若存在,求出ME的长,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆$G:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$ 的离心率为$\frac{{\sqrt{3}}}{2}$,直线l 过椭圆G 的右顶点A(2,0),且交椭圆G于另一点C
(Ⅰ)求椭圆G 的标准方程;
(Ⅱ)若以AC 为直径的圆经过椭圆G 的上顶点B,求直线l 的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知集合A={x|0<x<2},B={x|x2-1>0},那么A∩B=(  )
A.{x|0<x<1}B.{x|1<x<2}C.{x|-1<x<0}D.{x|-1<x<2}

查看答案和解析>>

同步练习册答案