精英家教网 > 高中数学 > 题目详情

【题目】当我们所处的北半球为冬季的时候,新西兰的惠灵顿市恰好是盛夏,因此北半球的人们冬天愿意去那里旅游,下面是一份惠灵顿机场提供的月平均气温统计表.

(月份)

1

2

3

4

5

6

7

8

9

10

11

12

17.3

17.9

17.3

15.8

13.7

11.6

10.06

9.5

10.06

11.6

13.7

15.8

1)根据这个统计表提供的数据,为惠灵顿市的月平均气温作出一个函数模型;

2)当自然气温不低于13.7℃时,惠灵顿市最适宜旅游,试根据你所确定的函数模型,确定惠灵顿市的最佳旅游时间.

【答案】1;(2)每年的十一月初至第二年的四月末

【解析】

1)作出散点图,得到曲线后,根据周期变化特点可考虑用余弦型函数模型;结合图象可求得解析式;

2)令可求得的取值,从而可确定最佳旅游时间.

1)以月份为横轴,气温为纵轴作出散点图,并以光滑的曲线连接各散点,得到如图所示的曲线

由于各地月平均气温是以个月为周期变化的,故依散点图所绘制的图象,可以考虑用来模拟

由最高气温为,最低气温为得:

时,y取最大值,则

为惠灵顿市的常年气温函数模型

2)当时,

说明在每年的十一月初至第二年的四月末气温不低于,是惠灵顿市的最佳旅游时间

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x+2x,g(x)=x+ln x,h(x)=x--1的零点分别为x1,x2,x3,则x1,x2,x3的大小关系是________(由小到大).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为倡导全体学生为特困学生捐款,举行“一元钱,一片心,诚信用水”活动,学生在购水处每领取一瓶矿泉水,便自觉向捐款箱中至少投入一元钱,现统计了连续天的售出和收益情况,如下表:

售出水量(单位:箱)

收益(单位:元)

(1)若每天售出箱水,求预计收益是多少元?

(2)期中考试以后,学校决定将诚信用水的收益,以奖学金的形式奖励给品学兼优的特困生,规定:特困生考入年级前名,获一等奖学金元;考入年级前名,获二等奖学金元;考入年级名以后的特困生不获得奖学金。甲、乙两名学生获一等奖学金的概率均为,获二等奖学金的概率均为,不获得奖学金的概率均为.

①在学生甲获得奖学金的条件下,求他获得一等奖学金的概率;

②已知甲、乙两名学生获得哪个等第的奖学金是相互独立的,求甲、乙两名学生所获得奖学金总金额的分布列及数学期望

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程](10分

在极坐标系中,圆C的极坐标方程为,若以极点O为原点,极轴为x轴的正半轴建立平面直角坐标系.

(1)求圆C的一个参数方程;

(2)在平面直角坐标系中,是圆C上的动点,试求的最大值,并求出此时点P的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某污水处理厂要在一个矩形污水处理池(ABCD)的池底水平铺设污水净化管道(管道构成Rt△FHE,H是直角项点)来处理污水.管道越长,污水净化效果越好.设计要求管道的接口H是AB的中点,E,F分别落在线段BC,AD上.已知AB=20米,AD=米,记∠BHE=

(1)试将污水净化管道的长度L表示为的函数,并写出定义域;

(2)当取何值时,污水净化效果最好?并求出此时管道的长度L.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示, 是边长为3的正方形, 平面与平面所成角为.

(Ⅰ)求证: 平面

(Ⅱ)设点是线段上一个动点,试确定点的位置,使得平面,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】20181024日,世界上最长的跨海大桥一港珠澳大桥正式通车在一般情况下,大桥上的车流速度单位:千米是车流密度单位:辆千米的函数当桥上的车流密度达到220千米时,将造成堵塞,此时车流速度为0;当车流密度不超过20千米时,车流速度为100千米时,研究表明:当时,车流速度v是车流密度x的一次函数.

时,求函数的表达式;

当车流密度x为多大时,车流量单位时间内通过桥上某观测点的车辆数,单位:辆可以达到最大?并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了调查中学生每天玩游戏的时间是否与性别有关,随机抽取了男、女学生各50人进行调查,根据其日均玩游戏的时间绘制了如下的频率分布直方图.

1)求所调查学生日均玩游戏时间在分钟的人数;

2)将日均玩游戏时间不低于60分钟的学生称为“游戏迷”,已知“游戏迷”中女生有6;根据已知条件,完成下面的列联表,并判断能否在犯错误的概率不超过0.05的前提下认为“游戏迷”和性别关系;

非游戏迷

游戏迷

合计

合计

:(其中为样本容量).

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(常数)满足.

1)求的值,并对常数的不同取值讨论函数奇偶性;

2)若在区间上单调递减,求的最小值.

3)若方程有解,求的取值范围.

查看答案和解析>>

同步练习册答案