精英家教网 > 高中数学 > 题目详情

已知函数,点是函数图像上任意一点,点关于原点的对称点的轨迹是函数的图像

   (1)当时,解关于的不等式

   (2)当,且时,总有恒成立,求的取值范围.

解:由题意知:P、Q关于原点对称,设Q(x,y)是函数y=g(x)图像上任一点,则P(-x,-y)是f(x)=loga(x+1)上的点,所以-y=loga(-x+1),于是g(x)=-loga(1-x).

(1)0<a<1,

(2)

可证,且在

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=(
1
3
)x
,那么(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法正确的有(  )个.
①已知函数f(x)在(a,b)内可导,若f(x)在(a,b)内单调递增,则对任意的?x∈(a,b),有f′(x)>0.
②函数f(x)图象在点P处的切线存在,则函数f(x)在点P处的导数存在;反之若函数f(x)在点P处的导数存在,则函数f(x)图象在点P处的切线存在.
③因为3>2,所以3+i>2+i,其中i为虚数单位.
④定积分定义可以分为:分割、近似代替、求和、取极限四步,对求和In=
n
i=1
f(ξi)△x
中ξi的选取是任意的,且In仅于n有关.
⑤已知2i-3是方程2x2+px+q=0的一个根,则实数p,q的值分别是12,26.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知幂函数f(x)的图象经过点(
1
8
2
4
),P(x1,y1),Q(x2,y2)(x1<x2)是函数图象上的任意不同两点,给出以下结论:①x1f(x1)>x2f(x2);②x1f(x1)<x2f(x2);③
f(x1)
x1
f(x2)
x2
;④
f(x1)
x1
f(x2)
x2
.其中正确结论的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数数学公式,且数学公式是函数y=f(x)的极值点.
(I)求实数a的值,并确定实数m的取值范围,使得函数?(x)=f(x)-m有两个零点;
(II)是否存在这样的直线l,同时满足:①l是函数y=f(x)的图象在点(2,f(2))处的切线;  ②l与函数y=g(x)的图象相切于点P(x0,y0),x0∈[e-1,e],如果存在,求实数b的取值范围;不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2011年江西省宜春市高考数学模拟试卷(文科)(解析版) 题型:解答题

已知函数,且是函数y=f(x)的极值点.
(I)求实数a的值,并确定实数m的取值范围,使得函数ϕ(x)=f(x)-m有两个零点;
(II)是否存在这样的直线l,同时满足:①l是函数y=f(x)的图象在点(2,f(2))处的切线;  ②l与函数y=g(x)的图象相切于点P(x,y),x∈[e-1,e],如果存在,求实数b的取值范围;不存在,请说明理由.

查看答案和解析>>

同步练习册答案