精英家教网 > 高中数学 > 题目详情

【题目】已知直线的参数方程为为参数),以坐标原点为极点,轴的非负半轴为极轴,建立极坐标系,曲线的极坐标方程为

1)求直线的普通方程及曲线的直角坐标方程;

2)设直线与曲线交于两点,求的值.

【答案】(1)(2)

【解析】

1)在直线的参数方程中消去参数可得出直线的普通方程,将曲线的极坐标方程先利用两角和的正弦公式展开,再等式两边同时乘以,再代入代入化简可得出曲线的直角坐标方程;

2)解法一:将直线的参数方程与曲线的普通方程联立,得到关于的二次方程,列出韦达定理,由弦长公式得可求出

解法二:计算圆心到直线的距离,并求出圆的半径,利用勾股定理以及垂径定理得出可计算出

解法三:将直线的方程与曲线的直角坐标方程联立,消去,得到关于的一元二次方程,列出韦达定理,利用弦长公式可计算出(其中为直线的斜率).

1)由直线的参数方程,消去参数

即直线普通方程为.

对于曲线,,,

,

曲线的直角坐标方程为.

2)解法一:将代入的直角坐标方程

整理得,

.

2)解法二:曲线的标准方程为

曲线是圆心为,半径的圆.

设圆心到直线:的距离为,.

.

(2) 解法三:联立,消去整理得,

解得,.

,分别代入,

所以,直线与圆的两个交点是.

所以,.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】甲、乙两人玩猜数字游戏,先由甲心中任想一个数字,记为,再由乙猜甲刚才想的数字把乙猜的数字记为,且,若,则称甲乙“心有灵犀”,现任意找两个人玩这个游戏,得出他们“心有灵犀”的概率为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定圆,其圆心为,点为圆所在平面内一定点,点为圆上一个动点,若线段的中垂线与直线交于点,则动点的轨迹可能为______.(写出所有正确的序号)(1)椭圆;(2)双曲线;(3)抛物线;(4)圆;(5)直线;(6)一个点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的定义域为,同时满足:对任意,总有,对定义域内的,若满足,恒有成立,则函数称为“函数”.

1)判断函数在区间上是否为“函数”,并说明理由;

2)当为“函数”时,求的最大值和最小值;

3)已知为“函数”:

证明:

证明:对一切,都有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,12月1日至12月5日的昼夜温差与实验室每天每100颗种子中的发芽数如下表所示:

日期

12月1日

12月2日

12月3日

12月4日

12月5日

温差x(℃)

10

11

13

12

8

发芽数y(颗)

23

25

30

26

16

该农科所确定的研究方案是:先从这5组数据中选取2组,用剩下的3组数据求回归方程,再用被选取的2组数据进行检验.

(1)求选取的2组数据恰好是不相邻的2组数据的概率.

(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求y关于x的线性回归方程.

(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在棱长为2的正方体中,分别为棱的中点,为棱上的一点,且,设点的中点,则点到平面的距离为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为且过点椭圆C轴的交点为AB(点A位于点B的上方),直线与椭圆C交于不同的两点MN(点M位于点N的上方).

(1)求椭圆C的方程;

(2)求△OMN面积的最大值;

(3)求证:直线AN和直线BM交点的纵坐标为常值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中:

①若,满足,则的最大值为

②若,则函数的最小值为

③若,满足,则的最小值为

④函数的最小值为

正确的有__________.(把你认为正确的序号全部写上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的离心率为,圆正半轴交于点,圆在点处的切线被椭圆截得的弦长为.

1)求椭圆的方程;

2)设圆上任意一点处的切线交椭圆于点,求证:.

查看答案和解析>>

同步练习册答案