【题目】设等差数列{an}满足(1﹣a1008)5+2016(1﹣a1008)=1,(1﹣a1009)5+2016(1﹣a1009)=﹣1,数列{an}的前n项和记为Sn , 则( )
A.S2016=2016,a1008>a1009
B.S2016=﹣2016,a1008>a1009
C.S2016=2016,a1008<a1009
D.S2016=﹣2016,a1008<a1009
【答案】C
【解析】解:(1﹣a1009)5+2016(1﹣a1009)=﹣1,变为:(﹣1+a1009)5+2016(﹣1+a1009)=1,
令f(x)=x5+2016x﹣1,f′(x)=5x4+2016>0,因此方程f(x)=0最多有一个实数根.
∵f(0)=﹣1<0,f(1)=2016>0,
因此f(x)=0有一个实数根x0∈(0,1).
∴1﹣a1008=a1009﹣1>0,
可得a1008+a1009=2,a1008<1<a1009.
S2016= = =2016.
故选:C.
(1﹣a1009)5+2016(1﹣a1009)=﹣1,变为:(﹣1+a1009)5+2016(﹣1+a1009)=1,令f(x)=x5+2016x﹣1,f′(x)=5x4+2016>0,因此方程f(x)=0最多有一个实数根.由f(0)<0,f(1)>0,因此f(x)=0有一个实数根x0∈(0,1).再利用等差数列的通项公式、求和公式及其性质即可得出.
科目:高中数学 来源: 题型:
【题目】已知,∈[1,+∞).
(1)当时,判断函数的单调性并证明;
(2)当时,求函数的最小值;
(3)若对任意∈[1,+∞),>0恒成立,试求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=lnx,g(x)=f(x)+ax2+bx,其中函数g(x)的图象在点(1,g(1))处的切线平行于x轴.
(1)确定a与b的关系;
(2)若a≥0,试讨论函数g(x)的单调性.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB= PD.
(Ⅰ)证明:平面PQC⊥平面DCQ
(Ⅱ)求二面角Q﹣BP﹣C的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系.
(1)将直线l: (t为参数)化为极坐标方程;
(2)设P是(1)中直线l上的动点,定点A( , ),B是曲线ρ=﹣2sinθ上的动点,求|PA|+|PB|的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥S﹣ABCD中,△ABD是正三角形,CB=CD,SC⊥BD.
(1)求证:SA⊥BD;
(2)若∠BCD=120°,M为棱SA的中点,求证:DM∥平面SBC.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,
(Ⅰ)求函数的最小正周期和单调递增区间;
(Ⅱ)当时,方程恰有两个不同的实数根,求实数的取值范围;
(Ⅲ)将函数的图象向右平移()个单位后所得函数的图象关于原点中心对称,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式:y= +10(x﹣6)2 , 其中3<x<6,a为常数,已知销售的价格为5元/千克时,每日可以售出该商品11千克.
(1)求a的值;
(2)若该商品的成本为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大,并求出最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com