精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,为等边三角形,且平面平面中点.

1)求证:平面

2)求二面角的正弦值.

【答案】1)证明见解析;(2.

【解析】

(1)可证平面,从而得到要证的线面垂直;

(2)过点的垂线,交于点,连结,可证二面角的平面角为,利用余弦定理可求其余弦值后可得其正弦值.我们也可以建立如图所示的空间直角坐标系,求出平面的法向量和平面的法向量后可求它们的夹角的余弦值,从而得到二面角的正弦值.

(1)证明:因为

所以

又∵平面平面,且平面平面平面

平面,又∵平面,∴ 所以

中点,且为等边三角形,∴,又∵

平面.

(2)【法一】过点的垂线,交于点,连结

中点为,连接.

因为为等边三角形,所以

由平面平面平面,平面平面

所以平面

平面,所以,由条件知

,所以平面

平面,所以

,所以

所以

由二面角的定义知,二面角的平面角为

中,

,所以

同理可得

,在中,

所以,二面角的正弦值为.

【法二】

中点为,连接,因为为等边三角形,所以

由平面平面平面,平面平面

所以平面

所以,由

可知,所以

中点为坐标原点,所在直线为轴,建立如图所示的空间直角坐标系

所以

所以

由(1)知,可以为平面的法向量,

因为的中点,

所以

由(1)知,平面的一个法向量为

设平面的法向量为

,则

所以

所以二面角的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】甲,乙两台机床同时生产一种零件,其质量按测试指标划分:指标大于或等于100为优品,大于等于90且小于100为合格品,小于90为次品,现随机抽取这两台车床生产的零件各100件进行检测,检测结果统计如下:

测试指标

[85,90)

[90,95)

[95,100)

[100,105)

[105,110)

机床甲

8

12

40

32

8

机床乙

7

18

40

29

6

(1)试分别估计甲机床、乙机床生产的零件为优品的概率;

(2)甲机床生产一件零件,若是优品可盈利160元,合格品可盈利100元,次品则亏损20元;假设甲机床某天生产50件零件,请估计甲机床该天的日利润(单位:元);

(3)从甲、乙机床生产的零件指标在[90,95)内的零件中,采用分层抽样的方法抽取5件,从这5件中任选2件进行质量分析,求这2件都是乙机床生产的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某化工厂一种溶液的成品,生产过程的最后工序是过滤溶液中的杂质,过滤初期溶液含杂质为2%,每经过一次过滤均可使溶液杂质含量减少,记过滤次数为x)时溶液杂质含量为y.

1)写出yx的函数关系式;

2)按市场要求,出厂成品杂质含量不能超过0.1%,问至少经过几次过滤才能使产品达到市场要求?(参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分14分)

已知为椭圆的左、右顶点, 为其右焦点, 是椭圆上异于的动点,且面积的最大值为

)求椭圆的方程及离心率;

)直线与椭圆在点处的切线交于点,当直线绕点转动时,试判断以

为直径的圆与直线的位置关系,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,其中左焦点(-2,0).

1) 求椭圆C的方程;

2) 若直线y=x+m与椭圆C交于不同的两点AB,且线段AB的中点M在圆x2+y2=1上,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,函数,其中为常数,且,令函数为函数的积函数.

1)求函数的表达式,并求其定义域;

2)当时,求函数的值域

3)是否存在自然数,使得函数的值域恰好为?若存在,试写出所有满足条件的自然数所构成的集合;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图7.

(1)根据茎叶图判断哪个班的平均身高较高;

(2)计算甲班的样本方差;

(3)现从乙班这10名同学中随机抽取两名身高不低于173cm的同学,求身高为176cm的同学被抽中的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆ab0)的离心率,过点A0-b)和Ba0)的直线与原点的距离为

1)求椭圆的方程.

2)已知定点E-10),若直线ykx2k≠0)与椭圆交于CD两点.问:是否存在k的值,使以CD为直径的圆过E?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为矩形,平面平面. 

(1)证明:平面平面

(2)若为棱的中点,,求四面体的体积.

查看答案和解析>>

同步练习册答案