精英家教网 > 高中数学 > 题目详情

【题目】设函数是定义为R的偶函数,且对任意的,都有且当时, ,若在区间内关于的方程恰好有3个不同的实数根,则的取值范围是 ( )

A. B. C. D.

【答案】D

【解析】∵对于任意的xR,都有f(x2)=f(2+x),∴函数f(x)是一个周期函数,且T=4.

又∵当x[2,0],f(x)= 1,且函数f(x)是定义在R上的偶函数,

若在区间(2,6]内关于x的方程恰有3个不同的实数解,

则函数y=f(x)y=在区间(2,6]上有三个不同的交点,如下图所示:

f(2)=f(2)=3,

则对于函数y=,由题意可得,当x=2时的函数值小于3,当x=6时的函数值大于3

<3,>3,由此解得: <a<2

故答案为:(,2).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】甲、乙两组各有三名同学,他们在一次测试中的成绩分别为:甲组:88、89、90;乙组:87、88、92.如果分别从甲、乙两组中随机选取一名同学,则这两名同学的成绩之差的绝对值不超过3的概率是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数,则下列说法不正确的是( )

A.其图象开口向上,且始终与轴有两个不同的交点

B.无论取何实数,其图象始终过定点

C.其图象对称轴的位置没有确定,但其形状不会因的取值不同而改变

D.函数的最小值大于

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族中的成员仅以自驾或公交方式通勤.分析显示:当)的成员自驾时,自驾群体的人均通勤时间为(单位:分钟),而公交群体的人均通勤时间不受影响,恒为分钟,试根据上述分析结果回答下列问题:

(1)当在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?

(2)求该地上班族的人均通勤时间的表达式;讨论的单调性,并说明其实际意义.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】, ,的内心,,其中,动点的轨迹所覆盖的面积为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校在2 015年11月份的高三期中考试后,随机地抽取了50名学生的数学成绩并进行了分析,结果这50名同学的成绩全部介于80分到140分之间.现将结果按如下方式分为6组,第一组[80,90),第二组[90,100),…第六组[130,140],得到如图所示的频率分布直方图.

(1)试估计该校数学的平均成绩(同一组中的数据用该区间的中点值作代表);
(2)这50名学生中成绩在120分以上的同学中任意抽取3人,该3人在130分(含130分)以上的人数记为X,求X的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将5名报名参加运动会的同学分别安排到跳绳、接力,投篮三项比赛中(假设这些比赛都不设人数上限),每人只参加一项,则共有种不同的方案;若每项比赛至少要安排一人时,则共有种不同的方案,其中的值为( )

A. 543 B. 425 C. 393 D. 275

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥P﹣ABCD中,侧面PCD⊥底面ABCD,PD⊥CD,E为PC中点,底面ABCD是直角梯形,AB∥CD,∠ADC=90°,AB=AD=PD=1,CD=2.

(1)求证:BE∥平面PAD;
(2)求证:BC⊥平面PBD;
(3)在线段PC上是否存在一点Q,使得二面角Q﹣BD﹣P为45°?若存在,求 的值;若不存在,请述明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=﹣ex+ex(e为自然对数的底数)
(1)求函数f(x)的最大值;
(2)设g(x)=lnx+ x2+ax,若对任意x1∈(0,2],总存在x2∈(0,2].使得g(x1)<f(x2),求实数a的取值范围.

查看答案和解析>>

同步练习册答案