精英家教网 > 高中数学 > 题目详情
已知f(x)=(x∈R)在区间[-1,1]上是增函数,
(Ⅰ)求实数a的值组成的集合A;
(Ⅱ)设关于x的方程f(x)=的两个非零实根为x1、x2,试问:是否存在实数m,使得不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范围;若不存在,请说明理由。
解:(Ⅰ)f′(x)=
∵f(x)在[-1,1]上是增函数,
∴f′(x)≥0对x∈[-1,1]恒成立,
即x2-ax-2≤0对x∈[-1,1]恒成立,①
设ψ(x)=x2-ax-2,

∵对x∈[-1,1],f(x)是连续函数,
且只有当a=1时,f′(-1)=0以及当a=-1时,f′(1)=0,
∴A={a|-1≤a≤1};
(Ⅱ)由,得x2-ax-2=0,
∵△=a2+8>0,
∴x1,x2是方程x2-ax-2=0的两非零实根,x1+x2=a,x1x2=-2,
从而|x1-x2|=
∵-1≤a≤1,
∴|x1-x2|=≤3,
要使不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立,
当且仅当m2+tm+1≥3对任意t∈[-1,1]恒成立,
即m2+tm-2≥0对任意t∈[-1,1]恒成立, ②
设g(t)=m2+tm-2=mt+(m2-2),
g(-1)=m2-m-2≥0,g(1)=m2+m-2≥0m≥2或m≤-2,
所以,存在实数m,使不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立,
其取值范围是{m|m≥2或m≤-2}。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=x+
bx
-3, x∈[1,2]

(1) b=2时,求f(x)的值域;
(2) b≥2时,f(x)的最大值为M,最小值为m,且满足:M-m≥4,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=sin(x+
π
2
),g(x)=cos(x-
π
2
)
,则下列结论中正确的是(  )
A、函数y=f(x)•g(x)的最大值为1
B、函数y=f(x)•g(x)的对称中心是(
2
+
π
4
,0),k∈Z
C、当x∈[-
π
2
π
2
]
时,函数y=f(x)•g(x)单调递增
D、将f(x)的图象向右平移
π
2
单位后得g(x)的图象

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
x+1,x∈[-1,0)
x2+1,x∈[0,1]
,则下列函数的图象错误的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)讨论函数f(x)在区间(-∞,0)上的单调性;
(Ⅲ)若数学公式,设g(x)是函数f(x)在区间[0,+∞)上的导函数,问是否存在实数a,满足a>1并且使g(x)在区间数学公式上的值域为数学公式,若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2011年高三数学第一轮基础知识训练(20)(解析版) 题型:解答题

已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)讨论函数f(x)在区间(-∞,0)上的单调性;
(Ⅲ)若,设g(x)是函数f(x)在区间[0,+∞)上的导函数,问是否存在实数a,满足a>1并且使g(x)在区间上的值域为,若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案