【题目】下列说法:
①将一组数据中的每个数据都加上或减去同一个常数后,均值与方差都不变;
②设有一个回归方程,变量x增加一个单位时,y平均增加3个单位;
③线性回归方程必经过点;
④在吸烟与患肺病这两个分类变量的计算中,从独立性检验知,有99%的把握认为吸烟与患肺病有关系时,我们说现有100人吸烟,那么其中有99人患肺病.其中错误的个数是( )
A. 0
B. 1
C. 2
D. 3
科目:高中数学 来源: 题型:
【题目】正方形ABCD和正方形ABEF的边长都是1,并且平面ABCD⊥平面ABEF,点M在AC上移动,点N在BF上移动.若|CM|=|BN|=a(0<a< ).
(1)求MN的长度;
(2)当a为何值时,MN的长度最短.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数在区间上单调递增;函数在其定义域上存在极值.
(1)若为真命题,求实数的取值范围;
(2)如果“或”为真命题,“且”为假命题,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)的定义域为A,若x1,x2∈A且f(x1)=f(x2)时总有x1=x2,则称f(x)为单函数,例如,函数f(x)=2x+1(x∈R)是单函数.下列命题:
①函数f(x)=x2(x∈R)是单函数;
②函数f(x)=是单函数;
③若f(x)为单函数,x1,x2∈A且x1≠x2,则f(x1)≠f(x2);
④在定义域上具有单调性的函数一定是单函数.
其中的真命题是________.(写出所有真命题的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(,为自然对数的底数),是的导函数.
(Ⅰ)当时,求证:;
(Ⅱ)是否存在正整数,使得对一切恒成立?若存在,求出的最大值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球时间(单位:小时)与当天投篮命中率之间的关系:
时间 | 1 | 2 | 3 | 4 | 5 |
命中率 | 0.4 | 0.5 | 0.6 | 0.6 | 0.4 |
小李这5天的平均投篮命中率;用线性回归分析的方法,预测小李该月6号打6小时篮球的投篮命中率.
附:线性回归方程中系数计算公式, ,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设点O为坐标原点,椭圆E:(a≥b>0)的右顶点为A,上顶点为B,过点O且斜率为的直线与直线AB相交M,且.
(Ⅰ)求椭圆E的离心率e;
(Ⅱ)PQ是圆C:(x-2)2+(y-1)2=5的一条直径,若椭圆E经过P,Q两点,求椭圆E的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《国务院关于修改〈中华人民共和国个人所得税法实施条例〉的决定》已于2008年3月1日起施行,个人所得税税率表如下:
级数 | 全月应纳税所得额 | 税率 |
1 | 不超过500元的部分 | 5% |
2 | 超过500至2 000元的部分 | 10% |
3 | 超过2 000元至5 000元的部分 | 15% |
… | … | … |
9 | 超过100 000元的部分 | 45% |
注:本表所示全月应纳税所得额为每月收入额减去2 000元后的余额.
(1)若某人2008年4月份的收入额为4 200元,求该人本月应纳税所得额和应纳的税费;
(2)设个人的月收入额为x元,应纳的税费为y元.当0<x≤3 600时,试写出y关于x的函数关系式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com