【题目】已知椭圆的离心率为,左顶点为,过椭圆的右焦点作互相垂直的两条直线和,分别交直线于,两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)求的面积的最小值;
(Ⅲ)设直线与椭圆的另一个交点为,椭圆的右顶点为,求证:,,三点共线.
科目:高中数学 来源: 题型:
【题目】《九章算术》中,将四个面都为直角三角形的四面体称为鳖臑,如图,在鳖臑中,平面,,且,过点分别作于点,于点,连接,则三棱锥的体积的最大值为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点是椭圆C:上的一点,椭圆C的离心率与双曲线的离心率互为倒数,斜率为直线l交椭圆C于B,D两点,且A、B、D三点互不重合.
(1)求椭圆C的方程;
(2)若分别为直线AB,AD的斜率,求证:为定值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设、分别是椭圆的左、右焦点.若是该椭圆上的一个动点,的最大值为1.
(1)求椭圆的方程;
(2)设直线与椭圆交于两点,点关于轴的对称点为(与不重合),则直线与轴是否交于一个定点?若是,请写出定点坐标,并证明你的结论;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在极坐标系中,,,,,,弧,所在圆的圆心分别是,,曲线是弧,曲线是线段,曲线是线段,曲线是弧.
(1)分别写出,,,的极坐标方程;
(2)曲线由,,,构成,若点,(),在上,则当时,求点的极坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设有限数列,定义集合为数列的伴随集合.
(Ⅰ)已知有限数列和数列.分别写出和的伴随集合;
(Ⅱ)已知有限等比数列,求的伴随集合中各元素之和;
(Ⅲ)已知有限等差数列,判断是否能同时属于的伴随集合,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥P-ABCD中,平面ABCD,,,,,E为PD的中点,点F在PC上,且.
(1)求证:平面平面PAD;
(2)求二面角F-AE-P的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,矩形为一张台球桌面,,.从点击出一个球,其可无限次经台球桌四边反弹运行.已知该球经过矩形的中心.
(1)试求所有整点 的个数,使得该球可以经过点;
(2)若该球在上述、两点间的最短路径长为,求的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com