精英家教网 > 高中数学 > 题目详情
在△ABC中,内角A、B、C的对边长分别为a、b、c,已知8sin2
B+C
2
-2cos2A=7,且a=
5
,b+c=5,求角A及△ABC的面积.
由8sin2
B+C
2
-2cos2A=7及A+B+C=π得:
4[1-cos(B+C)]-2(2cos2A-1)=7,
整理得:4[1+cosA]-4cos2A+2=7,即4cos2A-4cosA+1=0,
即(2cosA-1)2=0,
解得:cosA=
1
2

∵0<A<π,∴A=
π
3

由余弦定理得:cosA=
b2+c2-a2
2bc
=
1
2

∴(b+c)2-a2=3bc,
又a=
5
,b+c=5,
∴bc=
20
3

∴S△ABC=
1
2
bcsinA=
1
2
×
20
3
×
3
2
=
5
3
3
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•天津)在△ABC中,内角A,B,C所对的边分别是a,b,c,已知a=2,c=
2
,cosA=-
2
4

(1)求sinC和b的值;
(2)求cos(2A+
π
3
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A、B、C所对边长分别为a、b、c,已知a2-c2=b,且sinAcosC=3cosAsinC,则b=
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C的对边分别为a,b,c,且a,b是方程x2-2
3
x+2=0的两根,2cos(A+B)=1,则△ABC的面积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C所对的边分别是a,b,c.已知A=45°,a=6,b=3
2
,则B的大小为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C所对的边分别是a,b,c,已知B=60°,不等式x2-4x+1<0的解集为{x|a<x<c},则b=
13
13

查看答案和解析>>

同步练习册答案