精英家教网 > 高中数学 > 题目详情

对于函数,( )有下列命题:

①函数的定义域是,值域是

②函数的图像是中心对称图形,且对称中心是

③函数时,在上单调递增;

④函数必有反函数,且当时,;

⑤不等式的解集就是不等式的解集.

其中正确的命题有                           .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

14、对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点.函数y=x+2的零点是
-2
;若函数y=f(x)和g(x)均是定义在R上的连续函数,且部分函数值分别由下表给出:

则当x=
1
时,函数f(g(x))在区间(x,x+1)上必有零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三次函数f(x)=ax3+bx2+cx+d(a,b,c,d∈R)为奇函数,且在点(1,f(1))的切线方程为y=3x-2
(1)求函数f(x)的表达式.
(2)已知数列{an}的各项都是正数,且对于?n∈N*,都有(
n
i=1
ai
2=
n
i=1
f(ai)
,求数列{an}的首项a1和通项公式.
(3)在(2)的条件下,若数列{bn}满足bn=4n-m•2 an+1(m∈R,n∈N*),求数列{bn}的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x),若存在x0∈R,使得f(x0)=x0,则称x0为函数f(x)的不动点.若函数f(x)=
x2+a
bx-c
(b,c∈N*)有且仅有两个不动点0和2,且f(-2)<-
1
2

(1)试求函数f(x)的单调区间,
(2)已知各项不为0的数列{an}满足4Sn•f(
1
an
)=1,其中Sn表示数列{an}的前n项和,求证:(1-
1
an
)an+1
1
e
<(1-
1
an
)an

(3)在(2)的前题条件下,设bn=-
1
an
,Tn表示数列{bn}的前n项和,求证:T2011-1<ln2011<T2010

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•内江一模)对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0
f(x)的不动点.如果函数f(x)=
x2+a
bx-c
有且仅有两个不动点0、2.
(1)求b、c满足的关系式;
(2)若c=时,相邻两项和不为零的数列{an}满足4Snf(
1
an
)
=1(Sn是数列{an}的前n项和),求证:(1-
1
an
)an+1
1
e
<(1-
1
an
)an

(3)在(2)的条件下,设bn=-
1
an
,Tn是数列{bn}的前n项和,求证:T2012-1<ln2012<T2011

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年宣武区质量检一文)定义:如果对于函数定义与内的任意x, 都有(M为常数),那么称M为的下界,下界M中的最大值叫做的下确界。现给出下列函数,其中所有有下确界的函数是                                          (  )

  ①=cosx   ②  ③   ④

A. ①        B. ④                 C.②③④              D. ①③④

查看答案和解析>>

同步练习册答案