精英家教网 > 高中数学 > 题目详情
已知双曲线的焦点与椭圆的焦点重合,且该椭圆的长轴长为,是椭圆上的的动点.
(1)求椭圆标准方程;
(2)设动点满足:,直线的斜率之积为,求证:存在定点
使得为定值,并求出的坐标;
(3)若在第一象限,且点关于原点对称,点轴的射影为,连接 并延长交椭圆于
,求证:以为直径的圆经过点.
(1);(2)存在;(3)证明过程详见试题解析.

试题分析:(1)由双曲线的焦点与椭圆的焦点重合求出椭圆中的,再由,求出所求椭圆方程为;(2)先设,由,结合椭圆的标准方程可以得到使得为定值;(3)要证明以为直径的圆经过点,就是证明,详见解析.
试题解析:(1)解:由题设可知:双曲线的焦点为
所以椭圆中的
又由椭圆的长轴为4得
 
故椭圆的标准方程为: 
(2)证明:设,由可得:

由直线的斜率之积为可得:
 ,即 
由①②可得:…6分
M、N是椭圆上,故
,即 
由椭圆定义可知存在两个定点,使得动点P到两定点距离和为定值;
(3)证明:设
由题设可知 
由题设可知斜率存在且满足.……③
 
将③代入④可得:…⑤  
在椭圆,故 
所以 
因此以为直径的圆经过点.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆、抛物线的焦点均在轴上,的中心和的顶点均为原点,从每条曲线上取两个点,将其坐标记录如下:
(1)经判断点在抛物线上,试求出的标准方程;
(2)求抛物线的焦点的坐标并求出椭圆的离心率;
(3)过的焦点直线与椭圆交不同两点且满足,试求出直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知动点P与平面上两定点连线的斜率的积为定值.
(1)试求动点P的轨迹方程C.
(2)设直线与曲线C交于M、N两点,当|MN|=时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若椭圆上有个不同的点为右焦点,组成公差的等差数列,则的最大值为( )
A.199B.200 C.99D.100

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,已知椭圆C的中心在原点O,焦点在x轴上,短轴长为2,离心率为.
(1)求椭圆C的方程;
(2)AB为椭圆C上满足△AOB的面积为的任意两点,E为线段AB的中点,射线OE交椭圆C于点P.设t,求实数t的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆C:=1,直线l:y=mx+1,若对任意的m∈R,直线l与椭圆C恒有公共点,则实数b的取值范围是(  )
A.[1,4)B.[1,+∞)C.[1,4)∪(4,+∞)D.(4,+∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆=1及以下3个函数:①f(x)=x;②f(x)=sin x;③f(x)=cos x.其中函数图像能等分该椭圆面积的函数个数有(  )
A.1个B.2个
C.3个D.0个

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆E:=1(a>b>0)的右焦点为F(3,0),过点F的直线交椭圆于A、B两点.若AB的中点坐标为(1,-1),则E的方程为(  ).
A.=1  B.=1
C.=1  D.=1

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆的短轴长为2,离心率为,设过右焦点的直线与椭圆交于不同的两点A,B,过A,B作直线的垂线AP,BQ,垂足分别为P,Q.记, 若直线l的斜率,则的取值范围为      

查看答案和解析>>

同步练习册答案