精英家教网 > 高中数学 > 题目详情
设函数f(x)=x3+4x+5的图象在x=1处的切线为l,则圆2x2+2y2-8x-8y+15=0上的点到直线l的最短距离为
2
2
分析:利用求导法则得到f(x)的导函数,由函数f(x)=x3+4x+5的图象在x=1处的切线为l,将x=1代入导函数解析式中求出导函数值,即为切线l的斜率,将x=1代入函数解析式中f(1)的值,得到切点坐标,确定出切线l的方程,将圆的方程化为标准方程,找出圆心坐标和半径r,利用点到直线的距离公式求出圆心到切线l的距离d,用d-r即可求出圆2x2+2y2-8x-8y+15=0上的点到直线l的最短距离.
解答:解:求导得:f′(x)=3x2+4,
∴切线l的斜率k=f′(1)=3+4=7,且x=1时,f(1)=1+4+5=10,
∴切线l的方程为y-10=7(x-1),即7x-y+3=0,
将圆2x2+2y2-8x-8y+15=0化为标准方程得:(x-2)2+(y-2)2=
1
2

∴圆心(2,2)到切线l的距离d=
|14-2+3|
72+1
=
3
2
2

则圆2x2+2y2-8x-8y+15=0上的点到直线l的最短距离为d-r=
3
2
2
-
2
2
=
2

故答案为:
2
点评:此题考查了直线与圆的位置关系,曲线上某点切线方程的斜率,圆的标准方程,直线的点斜式方程,以及点到直线的距离公式,其中直线与圆相切时,圆心到直线的距离等于圆的半径.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

18、设函数f(x)=x3-3ax2+3bx的图象与直线12x+y-1=0相切于点(1,-11).
(Ⅰ)求a,b的值;
(Ⅱ)讨论函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3+ax2+x+1,a∈R.
(1)若x=1时,函数f(x)取得极值,求函数f(x)的图象在x=-1处的切线方程;
(2)若函数f(x)在区间(
12
,1)
内不单调,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3+ax2-a2x+5(a>0)
(1)当函数f(x)有两个零点时,求a的值;
(2)若a∈[3,6],当x∈[-4,4]时,求函数f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3-3x2-9x-1.求:
(Ⅰ)函数在(1,f(1))处的切线方程;
(Ⅱ)函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3•cosx+1,若f(a)=5,则f(-a)=
 

查看答案和解析>>

同步练习册答案