精英家教网 > 高中数学 > 题目详情
已知集合M={f(x)|y=f(x)},其元素f(x)须同时满足下列三个条件:
①定义域为(-1,1);
②对于任意的x,y∈(-1,1),均有
③当x<0时,f(x)>0.
(Ⅰ)若函数f(x)∈M,证明:y=f(x)在定义域上为奇函数;
(Ⅱ)若函数,判断是否有h(x)∈M,说明理由;
(Ⅲ)若f(x)∈M且,求函数的所有零点.
【答案】分析:(I)令x=y=O,由已知可得f(0)=0,令y=-x,可得f(x)+f(-x)=f(0)=0,进而根据奇函数的定义可得y=f(x)在定义域上为奇函数;
(Ⅱ)根据函数的解析式,求出函数的定义域,并验证条件①②③是否成立,进而根据集合M的定义判断h(x)∈M是否成立;
(III)根据已知分析函数的单调性,结合单调函数的图象和性质可以分析出函数在定义域上至多有一个零点,结合可求出该零点.
解答:证明:(I)若函数f(x)∈M,
则函数的定义域为(-1,1),关于原点对称
令x=y=O,则由得f(0)+f(0)=f(0)
即f(0)=0
令y=-x
则f(x)+f(-x)=f(0)=0
即y=f(x)在定义域上为奇函数;
(Ⅱ)h(x)∈M,理由如下:
函数的定义域为(-1,1),满足条件①
==
==
故h(x)+h(y)=,满足条件②
当-1<x<0时,,此时h(x)>0,满足条件③
故h(x)∈M
(III)令-1<x<y<1,则x-y<0,1-xy>0,则
及(1)可得
又∵当x<0时,f(x)>0
>0
即f(x)>f(y)
故f(x)在区间(-1,1)上为减函数,故函数至多有一个零点
,∴
又∵当x=y=2-时,
,此时=0
故函数的零点为2-
点评:本题是函数奇偶性与单调性的综合应用,同时又有一个比较难理解的新定义集合M,且(III)中函数零点的求法难度也比较大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

8、已知集合M={f(x)|f(-x)=f(x),x∈R};N={f(x)|f(-x)=-f(x),x∈R};P={f(x)|f(1-x)=f(1+x),x∈R};Q={f(x)|f(1-x)=-f(1+x),x∈R};若f(x)=(x-1)3,x∈R,则下列关系中正确的序列号为:

①f(x)∈M②f(x)∈N③f(x)∈P④f(x)∈Q

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M={f(x)|f2(x)-f2(y)=f(x+y)•f(x-y)},x,y∈R,有下列命题:
①若f1(x)=
1,x≥0
-1,x<0
则f1(x)∈M;
②若f2(x)=sinx,则f2(x)∈M;
③若f(x)∈M,y=f(x)的图象关于原点对称;
④若f(x)∈M,则对任意不等的实数x1、x2,总有
f1(x)-f2(x)
x1-x2
<0

⑤若f(x)∈M,则对任意的实数x1、x2,总有f(
x1+x2
2
)≤
f1(x)+f2(x)
2

其中是正确的命题有
 
.(写出所有正确命题的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•南充三模)已知集合M={f(x)|f2(x)-f2(y)=f(x+y)•f(x-y),x,y∈R},有下列命题
①若f1(x)=
1,x≥0
-1,x<0
则f1(x)∈M;
②若f2(x)=2x,则f2(x)∈M;
③若f3(x)∈M,则y=f3(x)的图象关于原点对称;
④若f4(x)∈M则对于任意不等的实数x1,x2,总有
f4(x1)-f4(x2)
x1-x2
<0成立.
其中所有正确命题的序号是
②③
②③

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M={f(x)|在定义域内存在实数x0,使得f(x0+1)=f(x0)+f(1)成立}.
(1)函数f(x)=
1
x
是否属于集合M?说明理由.
(2)证明:函数f(x)=2x+x2∈M.
(3)设函数f(x)=lg
a
2x+1
∈M,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•上海模拟)已知集合M={f(x)|f(x)+f(x+2)=f(x+1),x∈R},g(x)=sin
πx3

(1)判断g(x)与M的关系,并说明理由;
(2)M中的元素是否都是周期函数,证明你的结论;
(3)M中的元素是否都是奇函数,证明你的结论.

查看答案和解析>>

同步练习册答案