精英家教网 > 高中数学 > 题目详情
已知A,B是圆O:x2+y2=1上的两个点,P是AB线段上的动点,当△AOB的面积最大时,则
AO
?
AP
-
AP
2
的最大值是(  )
A、-1
B、0
C、
1
8
D、
1
2
分析:由题意知当∠AOB=
π
2
时,S取最大值
1
2
,此时
OA
OB
,建立坐标系可得A、B、P的坐标,可得
AO
AP
-
AP
2
为关于x的二次函数,由二次函数的最值可得.
解答:解:由题意知:△AOB的面积S=
1
2
|
OA
||
OB
|sin∠AOB
=
1
2
×1×1×sin∠AOB=
1
2
sin∠AOB,
当∠AOB=
π
2
时,S取最大值
1
2
,此时
OA
OB

如图所示,不妨取A(1,0),B(0,1),设P(x,1-x)
AO
AP
-
AP
2
=
AP
•(
AO
-
AP
)=
AP
PO

=(x-1,1-x)•(-x,x-1)
=-x(x-1)+(1-x)(x-1)
=(x-1)(1-2x)=-2x2+3x-1,x∈[0,1]
当x=-
3
2×(-2)
=
3
4
时,上式取最大值
1
8

故选:C
精英家教网
点评:本题考查平面向量的数量积的运算,涉及三角形的面积公式和二次函数的最值,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知A、B是圆x2+y2=4上满足条件
OA
OB
的两个点,其中O是坐标原点,分别过A、B作x轴的垂线段,交椭圆x2+4y2=4于A1、B1点,动点P满足
A1P
+2
PB1
=
0

(I)求动点P的轨迹方程
(II)设S1和S2分别表示△PAB和△B1A1A的面积,当点P在x轴的上方,点A在x轴的下方时,求S1+S2的最大值.

查看答案和解析>>

科目:高中数学 来源:2010年吉林省高考复习质量检测数学试卷(理科)(解析版) 题型:解答题

已知A、B是圆x2+y2=4上满足条件的两个点,其中O是坐标原点,分别过A、B作x轴的垂线段,交椭圆x2+4y2=4于A1、B1点,动点P满足
(I)求动点P的轨迹方程
(II)设S1和S2分别表示△PAB和△B1A1A的面积,当点P在x轴的上方,点A在x轴的下方时,求S1+S2的最大值.

查看答案和解析>>

科目:高中数学 来源:2011年江西省九校高三联考数学试卷(理科)(解析版) 题型:解答题

已知A、B是圆x2+y2=4上满足条件的两个点,其中O是坐标原点,分别过A、B作x轴的垂线段,交椭圆x2+4y2=4于A1、B1点,动点P满足
(I)求动点P的轨迹方程
(II)设S1和S2分别表示△PAB和△B1A1A的面积,当点P在x轴的上方,点A在x轴的下方时,求S1+S2的最大值.

查看答案和解析>>

科目:高中数学 来源:2010年吉林省高考数学模拟试卷(理科)(解析版) 题型:解答题

已知A、B是圆x2+y2=4上满足条件的两个点,其中O是坐标原点,分别过A、B作x轴的垂线段,交椭圆x2+4y2=4于A1、B1点,动点P满足
(I)求动点P的轨迹方程
(II)设S1和S2分别表示△PAB和△B1A1A的面积,当点P在x轴的上方,点A在x轴的下方时,求S1+S2的最大值.

查看答案和解析>>

科目:高中数学 来源:吉林省模拟题 题型:解答题

已知A、B是圆x2+y2=4上满足条件的两个点,其中O是坐标原点,分别过A、B作x轴的垂线段,交椭圆x2+4y2=4于A1、B1点,动点P满足
(Ⅰ)求动点P的轨迹方程;
(Ⅱ)设S1和S2分别表示△PAB和△B1A1A的面积,当点P在x轴的上方,点A在x轴的下方时,求S1+S2的最大值。

查看答案和解析>>

同步练习册答案