精英家教网 > 高中数学 > 题目详情
已知函数f(x)与g(x)的定义域为R,有下列5个命题:
①若f(x-2)=f(2-x),则f(x)的图象自身关于直线y轴对称;
②y=f(x-2)与y=f(2-x)的图象关于直线x=2对称;
③函数y=f(x+2)与y=f(2-x)的图象关于y轴对称;
④f(x)为奇函数,且f(x)图象关于直线x=
12
对称,则f(x)周期为2;
⑤f(x)为偶函数,g(x)为奇函数,且g(x)=f(x-1),则f(x)周期为2.
其中正确命题的序号为
①②③④
①②③④
分析:根据函数奇偶性、周期性的定义和函数图象对称性的定义,对各个选项依此加以推理论证,可得①②③④都是正确的命题,而⑤的结论应该是f(x)周期为4.由此可得本题的答案.
解答:解:对于①,令t=x-2,则2-x=-t,
由于f(x-2)=f(2-x),得f(t)=f(-t),所以函数f(x)是偶函数,
得f(x)的图象自身关于直线y轴对称,故①正确;
对于②,设f(m)=n,则函数y=f(x-2)的图象经过点A(m+2,n)
而y=f(2-x)的图象经过点B(-m+2,n),由于点A与点B是关于x=2对称的点,
故y=f(x-2)与y=f(2-x)的图象关于直线x=2对称,故②正确;
对于③,设F(x)=f(x+2),则f(2-x)=F(-x),由于F(x)与F(-x)图象关于y轴对称,
所以函数y=f(x+2)与y=f(2-x)的图象关于y轴对称,得③正确;
对于④,因为f(x)图象关于直线x=
1
2
对称,所以f(-x)=f(1+x),
结合函数为奇函数,得f(-x)=-f(x),故f(x+1)=-f(x)
由此可得f(x+2)=-f(x+1)=f(x),得f(x)是周期为2的周期函数,故④正确;
对于⑤,f(x)为偶函数,g(x)为奇函数,且g(x)=f(x-1),
则由于g(x)+g(-x)=0,得f(x-1)+f(-x-1)=0,
又因为f(-x-1)=f(x+1),所以f(x-1)+f(x+1)=0,
由此可证出f(x+4)=f(x),得f(x)是周期为4的周期函数,故⑤不正确
故答案为:①②③④
点评:本题给出关于函数奇偶性、周期性和图象对称的几个命题,要求我们找出其中的真命题.着重考查了函数的基本性质与函数图象的作法等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)与g(x)的定义域均为非负实数集,对任意x≥0,规定f(x)*g(x)=minf(x),g(x),若f(x)=3-x,g(x)=
2x+5
,则f(x)*g(x)的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

8、已知函数f(x)与g(x)是定义在R上的两个可导函数,若f(x)、g(x)满足f′(x)=g′(x),则下列说法正确的是
②④
(填序号).
①f(x)=g(x);                   ②f(x)-g(x)为常数函数;
③f(x)+g(x)为常数函数;         ④f(x)和g(x)的图象没有公共点或重合.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)与g(x)的定义域均为{1,2,3},且满足f(1)=f(3)=1,f(2)=3,g(x)+x=4,则满足f[g(x)]>g[f(x)]的x的值
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)与g(x)在R上有定义,且对任意的实数x,y,有f(x-y)=f(x)g(y)-g(x)f(y),f(1)=f(2)≠0,则g(1)+g(-1)=
1
1

查看答案和解析>>

同步练习册答案