精英家教网 > 高中数学 > 题目详情
1.下列命题正确的是(  )
A.“b2=ac”是“a,b,c成等比数列”的充要条件
B.“?x∈R,x2>0”的否定是“?x0∈R,x02>0”
C.“若a=-4,则函数f(x)=ax2+4x-1只有唯一一个零点”的逆命题为真命题
D.“函数f(x)=lnx2与函数g(x)=$\left\{\begin{array}{l}{2lnx,x>0}\\{2ln(-x),x<0}\end{array}\right.$的图象相同”

分析 举例说明A错误;直接写出全称命题的否定判断B;举例说明C错误;写出分段函数说明D正确.

解答 解:A错误,如a=0,b=0,c=1满足b2=ac,但a,b,c不成等比数列;
B错误,“?x∈R,x2>0”的否定是“?x0∈R,x02≤0”
C错误,“若a=-4,则函数f(x)=ax2+4x-1只有唯一一个零点”的逆命题是:“若函数f(x)=ax2+4x-1只有唯一一个零点,则a=-4”,为假命题,
比如a=0,f(x)=0的根是$\frac{1}{4}$;
D正确,函数f(x)=lnx2是分段函数,分x>0和x<0分段可得函数g(x)=$\left\{\begin{array}{l}{2lnx,x>0}\\{2ln(-x),x<0}\end{array}\right.$.
故选:D.

点评 本题考查命题的真假判断与应用,考查了等比数列的判定,考查命题的否定,训练了函数零点的求法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知$\overrightarrow m=(-2sinx,cosx)$,$\overrightarrow{n}$=(cosx,2sin(x+$\frac{π}{2}$)),且函数f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$+1
(1)求方程f(x)-1=0在(0,π)内有两个零点x1,x2,并求f(x1+x2)的值;
(2)若把函数y=f(x)的图象向左平移$\frac{π}{3}$个单位,再向上平移2个单位,得函数g(x)图象,求函数g(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设函数f(x)=log2(x-a)(a∈R).
(1)当a=2时,解方程f(x)-f(x+1)=-1;
(2)如图所示的平面直角坐标系中,每一个小方格的边长均为1,当a=1时,试在该坐标系中作出函数y=|f(x)|的简图,并写出(不需要证明)它的定义域、值域、奇偶性、单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB∥CD,∠ABC=90°,AB=2,AD=$\sqrt{2}$,PA=PD=CD=CB=1,E总是线段PB上的动点.
(Ⅰ)当E点在什么位置时,CE∥平面PAD?证明你的结论.
(Ⅱ)对于(Ⅰ)中的点E,求AE与底面ABCD所成角的正弦值;
(Ⅲ)求二面角A-PD-C的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数f(x)=sin(x+$\frac{π}{4}$)图象的一条对称轴方程为(  )
A.x=-$\frac{π}{4}$B.x=$\frac{π}{4}$C.x=$\frac{π}{2}$D.x=π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=x2+alnx+1(x>0).
(1)若f(3)=5,求f($\frac{1}{3}$)的值;
(2)若x>0时,f(x)≥1成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.某变速运动的物体,路程s(米)随时间t(秒)变化的函数关系式是s=t2-2t+5,则此物体在t=1秒时的瞬时速度为(  )
A.2m/sB.0m/sC.4m/sD.-4m/s

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.(1)实数a,b满足不等式组$\left\{\begin{array}{l}{b>0}\\{a+b+1<0}\\{3a+b+9>0}\end{array}\right.$,则在坐标平面aOb内,点(a,b)对应的区域S,求目标函数z=2a-b的取值范围.
(2)过点(-5,1)的光线经x轴反射后的光线过区域S,求反射光线所在直线l经过区域S内的整点(即横纵坐标为整数的点)时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数f(x)=2ax+1+3(a>0且a≠1)的图象经过的定点坐标是(-1,5).

查看答案和解析>>

同步练习册答案