精英家教网 > 高中数学 > 题目详情
15.已知a,b∈R,且a+b=1,则(a+1)2+(b+1)2的最小值为$\frac{9}{2}$.

分析 (a+1)2+(b+1)2的几何意义是点(-1,-1)和直线a+b=1上的点的距离的平方,作出直线a+b=1,由点到直线的距离公式计算即可得到最小值.

解答 解:(a+1)2+(b+1)2的几何意义是:
点(-1,-1)和直线a+b=1上的点的距离的平方,
作出直线a+b=1,可得点(-1,-1)到直线的距离的平方,即为最小值.
由d=$\frac{|-1-1-1|}{\sqrt{2}}$=$\frac{3\sqrt{2}}{2}$,
即有最小值为$\frac{9}{2}$.
故答案为:$\frac{9}{2}$.

点评 本题考查直线方程的运用,考查最小值的求法,注意运用几何意义,结合图形解决是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.函数y=$\sqrt{2x+3}$+$\frac{1}{x}$的定义域是(  )
A.{x|x≥-$\frac{3}{2}$}B.{x|x≥-$\frac{3}{2}$且x≠0}C.{x|x≤$\frac{3}{2}$}D.{x|x≤$\frac{3}{2}$且x≠0}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.若0≤a≤1,解关于x的不等式(x-a)(x+a-1)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)的定义域为R+,且对一切正实数x,y都有f(x+y)=f(x)+f(y)成立,若f(4)=2,求f(2)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知$-1<a<0,A=1+{a^2},B=1-{a^2},C=\frac{1}{1+a}$,比较A,B,C的大小结果为(  )
A.A<B<CB.B<C<AC.A<C<BD.B<A<C

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列命题中的真命题是(  )
A.a>b>0是1a<1b的充要条件
B.若a+b+c=0,则a>b>c是ac<0的充分而不必要条件
C.ac2>bc2是a>b的必要而不充分条件
D.a>b且c>d是a-c>b-d的必要不充分条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在盒子里有大小相同,仅颜色不同的5个小球,其中红球3个,黄球2个.现从中任取一球确定颜色后再放回盒子里,取出黄球则不再取球,且最多取3次.求:
(1)取一次就结束的概率;
(2)至少取到2个红球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在△ABC中,角A,B,C所对的边分别为a,b,c,已知S△ABC=$\frac{\sqrt{3}}{12}$a2,b=2,则c+$\frac{4}{c}$的最大值为(  )
A.5$\sqrt{2}$B.8C.6$\sqrt{3}$D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知直线l过点M(1,4),且与两坐标轴围成的三角形面积等于1,求直线l的方程.

查看答案和解析>>

同步练习册答案