精英家教网 > 高中数学 > 题目详情

【题目】质检部门对某工厂甲、乙两个车间生产的个零件质量进行检测.甲、乙两个车间的零件质量(单位:克)分布的茎叶图如图所示.零件质量不超过克的为合格.

(1)质检部门从甲车间个零件中随机抽取件进行检测,若至少件合格,检测即可通过,若至少件合格,检测即为良好,求甲车间在这次检测通过的条件下,获得检测良好的概率;

(2)若从甲、乙两车间个零件中随机抽取个零件,用表示乙车间的零件个数,求的分布列与数学期望.

【答案】(1)(2)见解析

【解析】分析:(1)设事件表示“件合格,件不合格”;事件表示“件合格,件不合格”;事件表示“件全合格”;事件表示“检测通过”;事件表示“检测良好”.

通过,P(E)=P(B)+P(C),.求解概率即可.
(2)由题意知, 的所有可能取值为0,1,2,求出概率得到分布列,然后求解期望即可.

详解:

(1)设事件表示“件合格,件不合格”;事件表示“件合格,件不合格”;事件表示“件全合格”;事件表示“检测通过”;事件表示“检测良好”.

.故所求概率为.

(2)可能取值为

分布列为

所以,.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】对于命题:存在一个常数,使得不等式对任意正数恒成立.

(1)试给出这个常数的值;

(2)在(1)所得结论的条件下证明命题

(3)对于上述命题,某同学正确地猜想了命题:“存在一个常数,使得不等式对任意正数恒成立.”观察命题与命题的规律,请猜想与正数相关的命题.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=xlnx﹣ax,g(x)=﹣x2﹣2.
(1)对一切x∈(0,+∞),f(x)≥g(x)恒成立,求实数a的取值范围;
(2)当a=﹣1时,求函数f(x)在区间[m,m+3](m>0)上的最值;
(3)证明:对一切x∈(0,+∞),都有 成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某生产厂家生产一种产品的固定成本为4万元,并且每生产1百台产品需增加投入0.8万元.已知销售收入(万元)满足(其中是该产品的月产量,单位:百台),假定生产的产品都能卖掉,请完成下列问题:

(1)将利润表示为月产量的函数

(2)当月产量为何值时,公司所获利润最大?最大利润为多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在等腰梯形ABCD中, ,E,F分别是底边AB,CD的中点,把四边形BEFC沿直线EF折起,使得面BEFC⊥面ADFE,若动点P∈平面ADFE,设PB,PC与平面ADFE所成的角分别为θ1 , θ2(θ1 , θ2均不为0).若θ12 , 则动点P的轨迹为(

A.直线
B.椭圆
C.圆
D.抛物线

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了研究黏虫孵化的平均温度(单位:)与孵化天数之间的关系,某课外兴趣小组通过试验得到以下6组数据:

他们分别用两种模型①,②分别进行拟合,得到相应的回归方程并进行残差分析,得到如图所示的残差图:

经过计算.

(1)根据残差图,比较模型①、②的拟合效果,应选择哪个模型?(给出判断即可,不必说明理由)

(2)残差绝对值大于1的数据被认为是异常数据,需要剔除,剔除后应用最小二乘法建立关于的线性回归方程.(精确到).

参考公式:线性回归方程中,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若处的切线与处的切线平行,求实数的值;

(2)若,讨论的单调性;

(3)在(2)的条件下,若,求证:函数只有一个零点,且

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某几何体的俯视图是如图所示的矩形,正视图是一个底边长为8、高为4的等腰三角形,侧视图是一个底边长为6、高为4的等腰三角形.

(1)求该几何体的体积;

(2)求该几何体的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下图来自古希腊数学家希波克拉底所研究的平面几何图形.此图由两个圆构成,O为大圆圆心,线段AB为小圆直径.△AOB的三边所围成的区域记为I黑色月牙部分记为,两小月牙之和(斜线部分)部分记为.在整个图形中随机取一点,此点取自的概率分别记为p1p2p3,则()

A.B.C.D.

查看答案和解析>>

同步练习册答案