精英家教网 > 高中数学 > 题目详情
11.若cosα=-$\frac{{\sqrt{3}}}{3}$,sin2α>0,则tanα的值为(  )
A.-$\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{2}}}{2}$C.-$\sqrt{2}$D.$\sqrt{2}$

分析 求出正弦函数值,然后求解即可.

解答 解:sin2α=2sinαcosα>0,cosα=-$\frac{{\sqrt{3}}}{3}$,∴sinα=$-\frac{\sqrt{6}}{3}$,
∴tanα=$\frac{sinα}{cosα}$=$\sqrt{2}$.
故选:D.

点评 本题考查二倍角的正弦函数以及同角三角函数的基本关系式的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.若指数函数y=(2a+1)x在R上是增函数,实数a的取值范围是(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知变量x,y满足约束条件$\left\{\begin{array}{l}{x+2y≥2}\\{2x+y≤4}\\{4x-y≥-1}\end{array}\right.$,则目标函数z=3x-y+3的最大值是9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.lg25+lg4+6${\;}^{lo{g}_{6}2}$+(-8.2)0=5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知数列{an}满足3an+1+an=0,a1=4,则{an}的前10项和等于(  )
A.-6(1-3-10B.$\frac{1}{9}(1-{3^{-10}})$C.3(1-3-10D.3(1+3-10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.方程sin2x-acosx=0在x∈($\frac{π}{2}$,$\frac{4π}{3}$]有且仅有一解.则实数a的取值范围是(  )
A.a≤0B.a<-$\frac{3}{2}$或a=0C.a<-$\frac{3}{2}$D.a<0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知tanα=2,则$\frac{2sinα-cosα}{sinα+cosα}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.己知:点A(2,3),B(5,4),C(7,10),若$\overrightarrow{AP}$=$\overrightarrow{AB}$+λ•$\overrightarrow{AC}$(λ∈R).
(1)求点p的坐标;
(2)试求λ为何值时,点P在第一、三象限平分线上?点P在第三象限内?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M≥0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的一个上界,已知函数f(x)=1+a($\frac{1}{2}$)x+($\frac{1}{4}$)x,g(x)=log${\;}_{\frac{1}{2}}$$\frac{1+x}{x-1}$.
(1)求函数g(x)在区间[$\frac{5}{3}$,3]上的所有上界构成的集合;
(2)若函数f(x)在[0,+∞)上是以3为上界的有界函数,求实数a的取值范围.

查看答案和解析>>

同步练习册答案