精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆C: (a>b>0)经过点( ,1),过点A(0,1)的动直线l与椭圆C交于M、N两点,当直线l过椭圆C的左焦点时,直线l的斜率为
(1)求椭圆C的方程;
(2)是否存在与点A不同的定点B,使得∠ABM=∠ABN恒成立?若存在,求出点B的坐标;若不存在,请说明理由.

【答案】
(1)

解:椭圆C: (a>b>0)经过点( ,1),

可得 + =1,又设左焦点为(﹣c,0),有 =

即c= ,a2﹣b2=2,解得a=2,b=

则椭圆方程为


(2)

解:假设存在与点A不同的定点B,使得∠ABM=∠ABN恒成立.

当直线MN的斜率为0时,由对称性可得B在y轴上,设为B(0,t),

设直线MN的方程为x=my+1,

代入椭圆方程可得,(2+m2)y2+2my﹣3=0,

设M(x1,y1),N(x2,y2),

可得y1+y2=﹣ ,y1y2=﹣

由假设可得kBM+kBN=0,

即为 + =0,

即有x1y2+x2y1=t(x1+x2),

即m(y1+1)y2+(my2+1)y1=t[m(y1+y2)+2],

即有2my1y2+(y1+y2)=t[m(y1+y2)+2],

即为 =t(﹣ +2),

化为﹣8m=4t,即t+2m=0,由于m为任意的,则t不为定值.

故不存在与点A不同的定点B,使得∠ABM=∠ABN恒成立


【解析】(1)将点( ,1)代入椭圆方程,设左焦点为(﹣c,0),再由斜率公式,可得c的值,结合a,b,c的关系,即可得到椭圆方程;(2)假设存在与点A不同的定点B,使得∠ABM=∠ABN恒成立.当直线MN的斜率为0时,由对称性可得B在y轴上,设为B(0,t),设直线MN的方程为x=my+1,代入椭圆方程,运用韦达定理,设M(x1 , y1),N(x2 , y2),由假设可得kBM+kBN=0,化简整理,可得t+2m=0,故不存在这样的定点B.
【考点精析】本题主要考查了椭圆的标准方程的相关知识点,需要掌握椭圆标准方程焦点在x轴:,焦点在y轴:才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知P是函数f(x)=ex(x>0)的图象上的动点,该图象在点P处的切线l交y轴于点M,过点P作l的垂线交y轴于点N,设线段MN的中点的纵坐标为t,则t的最大值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρcos2θ=2sinθ,它在点 处的切线为直线l.
(1)求直线l的直角坐标方程;
(2)已知点P为椭圆 =1上一点,求点P到直线l的距离的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的前n项和为Sn , 且a6=0,S4=14.
(1)求an
(2)将a2 , a3 , a4 , a5去掉一项后,剩下的三项按原来的顺序恰为等比数列{bn}的前三项,求数列{anbn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上的奇函数,若g(x)=f(x+1)+5,g′(x)为g(x)的导函数,对x∈R,总有g′(x)>2x,则g(x)<x2+4的解集为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在 ,点M是△ABC外一点,BM=2CM=2,则AM的最大值与最小值的差为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国有个名句“运筹帷幄之中,决胜千里之外”,其中的“筹”原意是指《孙子算经》中记载的算筹,古代是用算筹来进行计算,算筹是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放形式有纵横两种形式,如图,当表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,个位,百位,万位数用纵式表示,十位,千位,十万位用横式表示,以此类推.例如 6613 用算筹表示就是 ,则 8335 用算筹可表示为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2016年双十一期间,某电子产品销售商促销某种电子产品,该产品的成本为2元/件,通过市场分析,双十一期间该电子产品销售量y(单位:千件)与销售价格x(单位:元)之间满足关系式:y= +2x2﹣35x+170(其中2<x<8,a为常数),且已知当销售价格为3元/件时,该电子产品销售量为89千件. (Ⅰ)求实数a的值及双十一期间销售该电子产品获得的总利润L(x);
(Ⅱ)销售价格x为多少时,所获得的总利润L(x)最大?并求出总利润L(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,g(x)=x2eax(a<0). (Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若对任意x1 , x2∈[0,2],f(x1)≥g(x2)恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案