精英家教网 > 高中数学 > 题目详情

【题目】2015年我国将加快阶梯水价推行,原则是保基本、建机制、促节约,其中保基本是指保证至少80%的居民用户用水价格不变.为响应国家政策,制定合理的阶梯用水价格,某城市采用简单随机抽样的方法分别从郊区和城区抽取5户和20户居民的年人均用水量进行调研,抽取的数据的茎叶图如下(单位:吨):

(1)在郊区的这5户居民中随机抽取2户,求其年人均用水量都不超过30吨的概率;

(2)设该城市郊区和城区的居民户数比为,现将年人均用水量不超过30吨的用户定义为第一阶梯用户,并保证这一梯次的居民用户用水价格保持不变.试根据样本估计总体的思想,分析此方案是否符合国家保基本政策.

【答案】(1)(2)符合

【解析】

:(1)先列举出从5户郊区居民用户中随机抽取2户,其年人均用水量构成的所有基本事件,再列举其中年人均用水量都不超过30吨的基本事件,最后计算即可。

(2)设该城市郊区的居民用户数为,则其城区的居民用户数为5a.依题意计算该城市年人均用水量不超过30吨的居民用户的百分率。

解:(1)从5户郊区居民用户中随机抽取2户,其年人均用水量构成的所有基本事件是:

(19,25),(19,28),(19,32),(19,34),(25,28),(25,32),(25,34),(28,32),(28,34),

(32,34)共10个.

其中年人均用水量都不超过30吨的基本事件是:(19,25),(19,28),(25,28)共3个。

5户郊区居民用户中随机抽取2户,其年人均用水量都不超过30的事件为,则所求的概率为.  

(2)设该城市郊区的居民用户数为,则其城区的居民用户数为5a.依题意,该城市年人均用水量不超过30吨的居民用户的百分率为:

.故此方案符合国家保基本政策.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x(吨),一位居民的月用水量不超过x的部分按平价收费,超过x的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5)分成9组,制成了如图所示的频率分布直方图.
(Ⅰ)求直方图中a的值;
(Ⅱ)若将频率视为概率,从该城市居民中随机抽取3人,记这3人中月均用水量不低于3吨的人数为X,求X的分布列与数学期望.
(Ⅲ)若该市政府希望使85%的居民每月的用水量不超过标准x(吨),估计x的值(精确到0.01),并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:x2+y2-4x-14y+45=0及点Q(-2,3).

(1)若点P(m,m+1)在圆C上,求直线PQ的斜率.

(2)M是圆C上任一点,求|MQ|的取值范围.

(3)若点N(a,b)在圆C上,求的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图的程序框图,如果输入的a=6,b=4,那么输出的s的值为(
A.17
B.22
C.18
D.20

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),┄,[80,90],并整理得到如下频率分布直方图:

(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;

(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;

(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥A﹣BCFE中,四边形EFCB为梯形,EF∥BC,且EF= BC,△ABC是边长为2的正三角形,顶点F在AC上的射影为点G,且FG= ,CF= ,BF=
(1)证明:平面FGB⊥平面ABC;
(2)求二面角E﹣AB﹣F的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点 ,点P是圆 上的任意一点,设Q为该圆的圆心,并且线段PA的垂直平分线与直线PQ交于点E.
(1)求点E的轨迹方程;
(2)已知M,N两点的坐标分别为(﹣2,0),(2,0),点T是直线x=4上的一个动点,且直线TM,TN分别交(1)中点E的轨迹于C,D两点(M,N,C,D四点互不相同),证明:直线CD恒过一定点,并求出该定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,求

(1)过点A,B且周长最小的圆的方程;

(2)过点A,B且圆心在直线上的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱柱中, 平面 的中点.

(Ⅰ)求四棱锥的体积;

(Ⅱ)设点在线段上,且直线与平面所成角的正弦值为,求线段的长度;

判断线段上是否存在一点,使得?(结论不要求证明)

查看答案和解析>>

同步练习册答案