精英家教网 > 高中数学 > 题目详情
给出下列四个结论:
①函数y=ax(a>0且a≠1)与函数y=logaax(a>0且a≠1)的定义域相同;
②函数y=
1
2
+
1
2x+1
(x≠0)
是奇函数;
③函数y=sin(-x)在区间[
π
2
2
]上是减函数;
④函数y=cos|x|是周期函数.
其中正确结论的序号是
 
.(填写你认为正确的所有结论序号)
分析:根据指数函数的值域知道①正确,根据奇函数的定义,得到f(-x)+f(x)=0,知道函数是一个奇函数,根据正弦曲线得到③不正确,根据余弦曲线得到④正确.
解答:解:①根据指数函数的值域知道函数y=ax(a>0且a≠1)与函数y=logaax(a>0且a≠1)的定义域相同;故①正确,
②∵y=
1
2
+
1
2x+1
(x≠0)

1
2
+
1
2-x+1
+
1
2
+
1
2x+1
=0,
∴函数是奇函数,故②正确,
③函数y=sin(-x)在区间[
π
2
2
]上是增函数,故③不正确,
④函数y=cos|x|是周期函数,故④正确,
故答案为:①②④
点评:本题考查函数的奇偶性和单调性的判断,考查定义域和值域的问题,本题解题的关键是理解定义,本题是一个基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列四个结论:①函数y=ax(a>0且a≠1)与函数y=logaax(a>0且a≠1)的定义域相同;②函数y=k3x(k>0)(k为常数)的图象可由函数y=3x的图象经过平移得到;③函数y=
1
2
+
1
2x-1
(x≠0)是奇函数且函数y=x(
1
3x-1
+
1
2
)
(x≠0)是偶函数;④函数y=cos|x|是周期函数.其中正确结论的序号是
 
.(填写你认为正确的所有结论序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1的棱长为1,线段AC1上有两个动点E,F,且EF=
3
3
.给出下列四个结论:
①BF∥CE;
②CE⊥BD;
③三棱锥E-BCF的体积为定值;
④△BEF在底面ABCD内的正投影是面积为定值的三角形;
其中,正确结论的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在正三棱锥P-ABC中,D为PA的中点,O为△ABC的中心,给出下列四个结论:①OD∥平面PBC;  ②OD⊥PA;③OD⊥BC;  ④PA=2OD.其中正确结论的序号是
③④
③④

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•马鞍山模拟)给出下列四个结论:
①命题''?x∈R,x2-x>0''的否定是''?x∈R,x2-x≤0''
②“若am2<bm2,则a<b”的逆命题为真;
③已知直线l1:ax+2y-1=0,l1:x+by+2=0,则l1⊥l2的充要条件是
ab
=-2

④对于任意实数x,有f(-x)=-f(x),g(-x)=g(x)且x>0时,f'(x)>0,g'(x)>0,则x<0时,f'(x)>g'(x).
其中正确结论的序号是
①④
①④
(填上所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宁波二模)已知平面α、β、γ、和直线l,m,且l⊥m,α⊥γ,α∩γ=m,γ∩β=l;给出下列四个结论:①β⊥γ ②l⊥α③m⊥β;④α⊥β.其中正确的是(  )

查看答案和解析>>

同步练习册答案