精英家教网 > 高中数学 > 题目详情
17.sin 20°cos10°+cos20°sin170°=(  )
A.-$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.$\frac{1}{2}$

分析 利用诱导公式以及两角和的正弦函数化简求解即可.

解答 解:sin 20°cos10°+cos20°sin170°
=sin 20°cos10°+cos20°sin10°
=sin30°
=$\frac{1}{2}$.
故选:D.

点评 本题考查诱导公式以及两角和的正弦函数的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知$tan({α-\frac{π}{4}})=3$,则$\frac{1}{sinαcosα}$的值为-$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知某三棱锥的三视图是如图所示的三个直角三角形,那么这个三棱锥最小的一个表面的面积是6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设z=3x+5y,其中变量x和y满足条件$\left\{{\begin{array}{l}{5x+3y≤15}\\{y≤x+1{\;}^{\;}}\\{x-5y≤3}\end{array}}\right.$,求z的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设z=2x+y,其中变量x和y满足条件$\left\{\begin{array}{l}{y≤x}\\{x+y≤1}\\{y≥-1}\end{array}\right.$,求z的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.下列四个说法:
①一个命题的逆命题为真,则它的逆否命题一定为真;
②若k>0,则方程x2+2x-k=0有实数根;
③“x>2”是“$\frac{1}{x}$<$\frac{1}{2}$”的充分不必要条件;
④设{an}是公比为q的等比数列,则“q>1”是“{an}为递增数列”的充分而不必要条件.
其中真命题的序号是②③.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若直线ax-by+1=0(a>0,b>0)被圆x2+y2+2x-4y+1=0截得的弦长为4,则$\frac{2}{a}+\frac{1}{b}$的最小值是8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列各函数中,在(0,+∞)内为增函数的是(  )
A.y=-2x+1B.y=-x2C.y=x-2D.y=2x2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若f(cosx)=cos3x,那么f(sin70°)的值为$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案