精英家教网 > 高中数学 > 题目详情
已知
x2
a2
+
y2
b2
=1
(a>b>0)的右焦点F2恰好为y2=4x的焦点,A是两曲线的交点,|AF2|=
5
3
,那么椭圆的方程是(  )
分析:根据右焦点F2也是拋物线C:y2=4x的焦点,且|AF2|=
5
3
,可求出F2,根据抛物线的定义可求得点A的横坐标,并代入抛物线方程,可求其纵坐标;把点A代入椭圆方程,以及焦点坐标,解方程即可求得椭圆的方程.
解答:解:依题意知F2(1,0),设A(x1,y1).
由抛物线定义得1+x1=
5
3

即x1=
2
3

将x1=
2
3
代入抛物线方程得y1=
2
6
3
(2分),
进而由
(
2
3
)2
a2
+
(
2
6
3
)2
b2
=1
及a2-b2=1,
解得a2=4,b2=3.故椭圆的方程为
x2
4
+
y2
3
=1

故选A.
点评:此题是个基础题.考查抛物线的定义和简单的几何性质,待定系数法求椭圆的标准方程.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b
=1(a>b>0)
的左、右焦点分别为F1、F2,离心率e=
2
2
,右准线方程为x=2.
(1)求椭圆的标准方程;
(2)过点F1的直线l与该椭圆交于M、N两点,且|
F2M
+
F2N
|=
2
26
3
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•黄冈模拟)如图,已知曲线c1
x2
a2
+
y2
b 2
=1(b>a>0,y≥0)
与抛物线c2:x2=2py(p>0)的交点分别为A、B,曲线c1和抛物线c2在点A处的切线分别为l1、l2,且l1、l2的斜率分别为k1、k2
(Ⅰ)当
b
a
为定值时,求证k1•k2为定值(与p无关),并求出这个定值;
(Ⅱ)若直线l2与y轴的交点为D(0,-2),当a2+b2取得最小值9时,求曲线c1和c2的方程.

查看答案和解析>>

科目:高中数学 来源:四川 题型:解答题

已知椭圆
x2
a2
+
y2
b
=1(a>b>0)
的左、右焦点分别为F1、F2,离心率e=
2
2
,右准线方程为x=2.
(1)求椭圆的标准方程;
(2)过点F1的直线l与该椭圆交于M、N两点,且|
F2M
+
F2N
|=
2
26
3
,求直线l的方程.

查看答案和解析>>

同步练习册答案