分析 (Ⅰ)由递推式,运用代入法,计算可得所求值;
(Ⅱ)an+1=$\frac{2{a}_{n}}{2+{a}_{n}}$,取倒数,结合等差数列的定义和通项公式,即可得到所求;
(Ⅲ)由(Ⅱ)知:bn=$\frac{{a}_{n}}{n}$=$\frac{2}{n(n+1)}$=2[$\frac{1}{n}$-$\frac{1}{n+1}$],运用裂项相消求和公式,化简整理即可得到所求和.
解答 解:(Ⅰ)∵a1=1,an+1=$\frac{2{a}_{n}}{2+{a}_{n}}$,
∴a2=$\frac{2{a}_{1}}{2+{a}_{1}}$=$\frac{2}{3}$,a3=$\frac{2{a}_{2}}{2+{a}_{2}}$=$\frac{2}{4}$,a4=$\frac{2{a}_{3}}{2+{a}_{3}}$=$\frac{2}{5}$.
(Ⅱ)an+1=$\frac{2{a}_{n}}{2+{a}_{n}}$,取倒数可得$\frac{1}{{a}_{n+1}}$=$\frac{1}{{a}_{n}}$+$\frac{1}{2}$,
可得{$\frac{1}{{a}_{n}}$}为首项为1,公差为$\frac{1}{2}$的等差数列,
即有$\frac{1}{{a}_{n}}$=1+$\frac{1}{2}$(n-1)=$\frac{n+1}{2}$,
即为an=$\frac{2}{n+1}$;
(Ⅲ)由(Ⅱ)知:bn=$\frac{{a}_{n}}{n}$=$\frac{2}{n(n+1)}$=2[$\frac{1}{n}$-$\frac{1}{n+1}$],
从而sn=b1+b2+…+bn
=2[(1-$\frac{1}{2}$)+($\frac{1}{2}$-$\frac{1}{3}$)+…+($\frac{1}{n}$-$\frac{1}{n+1}$)]=2[1-$\frac{1}{n+1}$]=$\frac{2n}{n+1}$.
点评 本题考查数列的通项公式的求法,注意运用取倒数,考查数列的求和方法:裂项相消求和,考查化简整理的能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | “若a>1,则a2>1”的否命题是“若a>1,则a2≤1” | |
B. | 在△ABC中,“A>B”是“sinA>sinB”必要不充分条件 | |
C. | “若tanα≠$\sqrt{3}$,则α≠$\frac{π}{3}$”是真命题 | |
D. | ?x0∈(-∞,0)使得3x0<4x0成立 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | [-1,0) | B. | (0,1] | C. | (-2,0) | D. | (-∞,-2) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 4 | B. | 6 | C. | 8 | D. | 与m有关 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com