精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆C1 , 抛物线C2的焦点均在x轴上,C1的中心和C2的顶点均为原点O,从每条曲线上各取两个点,其坐标分别是(3,一2 ),(一2,0),(4,一4),( ). (Ⅰ)求C1 , C2的标准方程;
(Ⅱ)是否存在直线L满足条件:①过C2的焦点F;②与C1交与不同的两点M,N且满足 ?若存在,求出直线方程;若不存在,说明理由.

【答案】解:(Ⅰ)设抛物线C2:y2=2px(p≠0),

则有 ,x≠0,

据此验证4个点知(3,﹣2 ),(4,﹣4)在抛物线上,

∴C2:y2=4x,

设C1 ,(a>b>0),

把点(﹣2,0),( )代入,得:

,解得

的方程为:

(Ⅱ)当直线l的斜率不存在时,

直线l的方程为x=1,直线l交抛物线于M(1, ),N(1,﹣ ),

≠0,不满足题意,

当直线l的斜率存在时,假设存在直线l,过抛物线焦点F(1,0),

设其方程为y=k(x﹣1),与C1的交点坐标为M(x1,y1),N(x2,y2),

,消去y并整理,得(1+4k2)x2﹣8k2x+4(k2﹣1)=0,

,①

y1y2=k(x1﹣1)k(x2﹣1)=k2[x1x2﹣(x1+x2)+1],

=﹣ ,②

,即 =0,得x1x2+y1y2=0,

将①,②代入(*)式,得 =

解得k=±2,

∴存在直线l满足条件,且l的方程为2x﹣y﹣2=0或2x+y﹣2=0


【解析】(Ⅰ)设抛物线C2:y2=2px(p≠0),则有 ,≠0,由此能求出C2:y2=4x,设C1 ,(a>b>0),由题意得 ,由此能求出 的方程为: .(Ⅱ)当直线l的斜率不存在时,直线l的方程为x=1,直线l交抛物线于M(1, ),N(1,﹣ ), ≠0,不满足题意,当直线l的斜率存在时,假设存在直线l,过抛物线焦点F(1,0),设其方程为y=k(x﹣1),与C1的交点坐标为M(x1,y1),N(x2,y2),由 ,得(1+4k2)x2﹣8k2x+4(k2﹣1)=0,由此利用韦达定理结合已知条件能求出直线l的方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知 是上、下底边长分别为2和6,高为 的等腰梯形,将它沿对称轴 折叠,使二面角 为直二面角.

(1)证明:
(2)求二面角 的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C:y2=2px(p>0)的焦点为F,点M(2,m)为其上一点,且|MF|=4.
(1)求p与m的值;
(2)如图,过点F作直线l交抛物线于A、B两点,求直线OA、OB的斜率之积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了适应市场需要某地准备建一个圆形生猪储备基地(如右图)它的附近有一条公路从基地中心O处向东走1 km是储备基地的边界上的点A接着向东再走7 km到达公路上的点B从基地中心O向正北走8 km到达公路的另一点C.现准备在储备基地的边界上选一点D修建一条由D通往公路BC的专用线DEDE的最短距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD中,PA⊥底面ABCDAB⊥ADAC⊥CD∠ABC=60°PA=AB=BC

EPC的中点.求证:

CD⊥AE

PD⊥平面ABE

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知ABCA(2,-1)B(4,3)C(3,-2)

(1)BC边上的高所在直线的一般式方程;

(2)ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在正方体ABCD﹣A1B1C1D1中,E、F分别是棱DD1、C1D1的中点. (Ⅰ)证明:平面ADC1B1⊥平面A1BE;
(Ⅱ)证明:B1F∥平面A1BE;
(Ⅲ)若正方体棱长为1,求四面体A1﹣B1BE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求分别满足下列条件的直线l的方程:

(1)斜率是,且与两坐标轴围成的三角形的面积是6;

(2)经过两点A(1,0)、B(m,1);

(3)经过点(4,-3),且在两坐标轴上的截距的绝对值相等.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某省高考改革新方案,不分文理科,高考成绩实行“3+3”的构成模式,第一个“3”是语文、数学、外语,每门满分150分,第二个“3”由考生在思想政治、历史、地理、物理、化学、生物6个科目中自主选择其中3个科目参加等级性考试,每门满分100分,高考录取成绩卷面总分满分750分.为了调查学生对物理、化学、生物的选考情况,将“某市某一届学生在物理、化学、生物三个科目中至少选考一科的学生”记作学生群体S,从学生群体S中随机抽取了50名学生进行调查,他们选考物理,化学,生物的科目数及人数统计如表:

选考物理、化学、生物的科目数

1

2

3

人数

5

25

20

(I)从所调查的50名学生中任选2名,求他们选考物理、化学、生物科目数量不相等的概率;
(II)从所调查的50名学生中任选2名,记X表示这2名学生选考物理、化学、生物的科目数量之差的绝对值,求随机变量X的分布列和数学期望;
(III)将频率视为概率,现从学生群体S中随机抽取4名学生,记其中恰好选考物理、化学、生物中的两科目的学生数记作Y,求事件“y≥2”的概率.

查看答案和解析>>

同步练习册答案